Stable approximation for call function via Stein's method

被引:0
|
作者
Chen, Peng [1 ]
Qi, Tianyi [1 ]
Zhang, Ting [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Stable approximation; Call function; Stein's method; CDO pricing;
D O I
10.1016/j.spl.2024.110328
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let S be a sum of independent identically distribution random variables with finite first moment and hM be a call function defined by gM(x) = max{x - M , 0} for x is an element of R , M > 0 . In this paper, we assume the random variables are in the domain ?Za of normal attraction of a stable law of exponent a , then for a is an element of (1, 2) , we use the Stein's method developed in Chen et al. (2024) to give uniform and non uniform bounds on a-stable approximation for the call function without additional moment assumptions. These results will make the approximation theory of call function applicable to the lower moment conditions, and greatly expand the scope of application of call function in many fields.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein’s Method I
    Robert E. Gaunt
    Journal of Theoretical Probability, 2020, 33 : 465 - 505
  • [42] Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma
    Erdogdu, Murat A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [43] COMPOUND POISSON APPROXIMATION FOR NONNEGATIVE RANDOM-VARIABLES VIA STEIN METHOD
    BARBOUR, AD
    CHEN, LHY
    LOH, WL
    ANNALS OF PROBABILITY, 1992, 20 (04): : 1843 - 1866
  • [44] Distances Between Distributions Via Stein's Method
    Ernst, Marie
    Swan, Yvik
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (02) : 949 - 987
  • [45] Distances Between Distributions Via Stein’s Method
    Marie Ernst
    Yvik Swan
    Journal of Theoretical Probability, 2022, 35 : 949 - 987
  • [46] A Non-uniform Bound on Negative Binomial Approximation via Stein's Method and z-functions
    Jaioun, K.
    Panichkitkosolkul, W.
    Teerapabolarn, K.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 519 - 536
  • [47] A Non-uniform Bound on Negative Binomial Approximation via Stein’s Method and z-functions
    K. Jaioun
    W. Panichkitkosolkul
    K. Teerapabolarn
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 519 - 536
  • [48] A Non Uniform Bound on Normal Approximation of Randomized Orthogonal Array Sampling Designs via Stein's Method
    Rerkruthairat, Nahathai
    Thongtha, Dawud
    CHIANG MAI JOURNAL OF SCIENCE, 2016, 43 (05): : 1191 - 1203
  • [49] Compound Poisson approximation for Markov chains using Stein's method
    Erhardsson, T
    ANNALS OF PROBABILITY, 1999, 27 (01): : 565 - 596
  • [50] Multivariate normal approximation using Stein's method and Malliavin calculus
    Nourdin, Ivan
    Peccati, Giovanni
    Reveillac, Anthony
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 45 - 58