Emotion detection using natural language processing

被引:0
|
作者
Nunez, Antonio alvarez [1 ]
Diaz, Maria del Carmen Santiago [1 ]
Vazquez, Ana Claudia Zenteno [1 ]
Marcial, Judith Perez [1 ]
Linares, Gustavo Trinidad Rubin [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Comp, 14 Sur Y Ave San Claudio, Puebla 72570, Puebla, Mexico
关键词
Neural Networks; Natural Language Processing; Emotional; Prosody; Alexithymia;
D O I
10.61467/2007.1558.2024.v15i5.564
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The analysis of human emotions is of great interest in data analysis, as it allows us to identify patterns and behaviors in people. Different techniques are used, such as linguistic rule-based approaches. Natural language processing (NLP) is a branch of AI that seeks to make machines understand language like humans do. It combines computational linguistics with machine learning and deep learning models. In emotional prosody, spoken words convey linguistic and paralinguistic information, where the emotional context influences the interpretation of the words. Alexithymia refers to difficulty identifying and expressing emotions. AI and NLP offer powerful tools for their study and application, which is why it was possible to develop an AI for the detection of emotions through natural language, resulting in a system that offers sentiment analysis for patients.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 50 条
  • [41] Emotion and Sentiment Recognition using Natural Language Processing and Machine Learning Techniques during Disaster Situation
    Hart, Peter
    Rahman, Tasnia
    Kumar, Sathish A. P.
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 246 - 252
  • [42] From natural language to accounting entries using a natural language processing method
    Chen, Yasheng
    Huang, Xian
    Wu, Zhuojun
    ACCOUNTING AND FINANCE, 2023, 63 (04): : 3781 - 3795
  • [43] Natural language processing for automated detection of incidental durotomy
    Karhade, Aditya, V
    Bongers, Michiel E. R.
    Groot, Olivier Q.
    Kazarian, Erick R.
    Cha, Thomas D.
    Fogel, Harold A.
    Hershman, Stuart H.
    Tobert, Daniel G.
    Schoenfeld, Andrew J.
    Bono, Christopher M.
    Kang, James D.
    Harris, Mitchel B.
    Schwab, Joseph H.
    SPINE JOURNAL, 2020, 20 (05): : 695 - 700
  • [44] Vulnerability Detection Methods Based on Natural Language Processing
    Yang Y.
    Li Y.
    Chen K.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (12): : 2649 - 2666
  • [45] A Survey on Natural Language Processing for Fake News Detection
    Oshikawa, Ray
    Qian, Jing
    Wang, William Yang
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 6086 - 6093
  • [46] Novelty Detection: A Perspective from Natural Language Processing
    Ghosal, Tirthankar
    Saikh, Tanik
    Biswas, Tameesh
    Ekbal, Asif
    Bhattacharyya, Pushpak
    COMPUTATIONAL LINGUISTICS, 2022, 48 (01) : 77 - 117
  • [47] Natural language processing (NLP) for personality disorder detection
    Jang, Jihee
    Yoon, Seowon
    Son, Gaeun
    Park, Soohyun
    Hwang, Jueun
    Choeh, Joon Yeon
    Choi, Kee-hong
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2024, 59 : 79 - 80
  • [48] Emotion Analysis in Natural Language
    Pu, Pearl
    PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), 2017, : 3 - 3
  • [49] Study of Regional Language Translator Using Natural Language Processing
    Santhi, P.
    Aarthi, J.
    Bhavatharini, S.
    Nandhini, N. Guna
    Snegha, R.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 91 - 100
  • [50] Pest Recognition Using Natural Language Processing
    Hernandez-Castillo, Carlos
    Hiram Guedea-Noriega, Hector
    Angel Rodriguez-Garcia, Miguel
    Garcia-Sanchez, Francisco
    TECHNOLOGIES AND INNOVATION (CITI 2019), 2019, 1124 : 3 - 16