Scalable Compute Platform For Sensor Processing

被引:0
|
作者
Land, Ian [1 ]
Parker, Michael [2 ]
机构
[1] Synopsys Inc, A&G Solut, Sunnyvale, CA 94085 USA
[2] Raytheon Technol, El Segundo, CA 90245 USA
关键词
RF; EW; ISR; AI; EOIR; Radar; LiDAR; Radio Frequency; Electronic Warfare; Artificial Intelligence; Machine Learning; Communications; Array Sensor Processing; Video; Imaging; Autonomy;
D O I
10.1109/NAECON61878.2024.10670682
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
High-performance DoD applications like sensor arrays must continue to push the state-of-the-art (SOTA) size, weight, and power (SWaP) while advancing system performance processing of the individual sensors. A scalable Vector Processor (VP) based compute platform can be created to deliver ASIC-like performance/power while incorporating FPGA-like flexibility and latency. This paper presents a study of key processors and assesses the strengths and challenges where a vector-engine based platform can deliver capabilities beyond the traditional methods that leverage FPGAs, while adding in AI acceleration and consideration of multiple sensors, sensor fusion, and strategic applications.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [41] A Cloud Platform for Collecting and Processing Road Pavement Multi Sensor Data
    De Vita, Fabrizio
    Sollazzo, Giuseppe
    Bruneo, Dario
    Pellegrino, Orazio
    Bosurgi, Gaetano
    2021 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2021), 2021, : 353 - 358
  • [42] COMPUTE SERVERS CUT PROCESSING COST
    FOLGER, D
    MINI-MICRO SYSTEMS, 1987, 20 (06): : 93 - &
  • [43] A hardware and software platform for analog sensor processing using exposure control
    Gustafsson, A
    Åström, A
    ADVANCED FOCAL PLANE ARRAYS AND ELECTRONIC CAMERAS II, 1998, 3410 : 168 - 175
  • [44] A Sensor Data Processing and Access Platform based on Hadoop for Smart Environments
    Lin, Chi-Yi
    Li, Chia-Chen
    Huang, Wei-Hsun
    Liao, Wei-Che
    Chen, Wei-Ming
    2014 17TH INTERNATIONAL CONFERENCE ON NETWORK-BASED INFORMATION SYSTEMS (NBIS 2014), 2014, : 453 - 458
  • [45] SCALEDEEP: A Scalable Compute Architecture for Learning and Evaluating Deep Networks
    Venkataramani, Swagath
    Ranjan, Ashish
    Banerjee, Subarno
    Das, Dipankar
    Avancha, Sasikanth
    Jagannathan, Ashok
    Durg, Ajaya
    Nagaraj, Dheemanth
    Kaul, Bharat
    Dubey, Pradeep
    Raghunathan, Anand
    44TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2017), 2017, : 13 - 26
  • [46] CU-Simulator: A Parallel Scalable Simulation Platform for Radio Channel in Wireless Sensor Networks
    Jian, Liheng
    Liu, Ying
    Yi, Weidong
    AD HOC & SENSOR WIRELESS NETWORKS, 2015, 24 (1-2) : 109 - 134
  • [47] Scalable Declarative HEP Analysis Workflows for Containerised Compute Clouds
    Simko, Tibor
    Heinrich, Lukas Alexander
    Lange, Clemens
    Lintuluoto, Adelina Eleonora
    MacDonell, Danika Marina
    Mecionis, Audrius
    Rodriguez Rodriguez, Diego
    Shandilya, Parth
    Vidal Garcia, Marco
    FRONTIERS IN BIG DATA, 2021, 4
  • [48] NP-SARC: Scalable network processing in the SARC multi-core FPGA platform
    Kachris, Christoforos
    Nikiforos, George
    Papaefstathiou, Vassilis
    Kavadias, Stamatis
    Katevenis, Manolis
    JOURNAL OF SYSTEMS ARCHITECTURE, 2013, 59 (01) : 39 - 47
  • [49] Scalable Data Processing Approach and Anomaly Detection Method for User and Entity Behavior Analytics Platform
    Lukashin, Alexey
    Popov, Mikhail
    Bolshakov, Anatoliy
    Nikolashin, Yuri
    INTELLIGENT DISTRIBUTED COMPUTING XIII, 2020, 868 : 344 - 349
  • [50] Towards Highly Scalable Pregel-based Graph Processing Platform with X10
    Bao, Nguyen Thien
    Suzumura, Toyotaro
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), 2013, : 501 - 508