Modeling of Dynamic Systems With Hysteresis Using Predictive Gradient-Based Method

被引:0
|
作者
Chai, Guo [1 ,2 ]
Tan, Yonghong [3 ]
Tan, Qingyuan [4 ]
Dong, Ruili [5 ]
Ke, Changzhong [5 ]
Gu, Ya [3 ]
Wang, Tianyu [6 ]
机构
[1] Shanghai Normal Univ, Coll Math, Shanghai 200234, Peoples R China
[2] Henan Univ Sci & Technol, Dept Informat & Comp Sci, Luoyang 471000, Peoples R China
[3] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 200234, Peoples R China
[4] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[5] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[6] Henan Inst Sci & Technol, Sch Math Sci, Xinxiang 453003, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Predictive gradient; identification; hysteresis; convergence analysis; micromirror; RATE-DEPENDENT HYSTERESIS; IDENTIFICATION; COMPENSATION;
D O I
10.1109/TASE.2024.3494596
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new modeling method of dynamic systems with rate-dependent hysteresis is proposed in this paper. In this method, a hysteresis model with simple exponential structure is proposed to describe the features of rate-dependent hysteresis. Subsequently, the properties of the proposed hysteresis model are analyzed. Then, a Hammerstein model embedded with the proposed hysteresis model is established to describe the behavior of dynamic systems with rate-dependent hysteresis. Afterward, a predictive gradient-based modeling method is proposed to determine the parameters of the new model. In addition, the convergence analysis of the predictive gradient based modeling method is analyzed. Then, the proposed identification method is applied to modeling of electromagnetic scanning micromirror chips. Finally, the comparison between the proposed novel modeling scheme and other typical nonlinear modeling methods is illustrated.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A gradient-based sequential radial basis function neural network modeling method
    Wen Yao
    Xiaoqian Chen
    Wencai Luo
    Neural Computing and Applications, 2009, 18 : 477 - 484
  • [22] Constraint handling in genetic algorithms using a gradient-based repair method
    Chootinan, P
    Chen, A
    COMPUTERS & OPERATIONS RESEARCH, 2006, 33 (08) : 2263 - 2281
  • [23] Mutant Altimetric Parameter Estimation Using a Gradient-Based Bayesian Method
    Liao, Xianghong
    Zhang, Zenghui
    Jiang, Ge
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Gradient-based feedback control of quantum systems
    Gerasimos G. Rigatos
    Rigatos, G. G. (grigat@ieee.org), 1600, Allerton Press Incorporation (21): : 77 - 85
  • [25] Modeling Spatial Anisotropic Relationships Using Gradient-Based Geographically Weighted Regression
    Yan, Jinbiao
    Wu, Bo
    Duan, Xiaoqi
    ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 2024, 114 (04) : 697 - 718
  • [26] Efficient gradient-based parameter estimation for dynamic models using qualitative data
    Schmiester, Leonard
    Weindl, Daniel
    Hasenauer, Jan
    BIOINFORMATICS, 2021, 37 (23) : 4493 - 4500
  • [27] A Gradient-Based Globalization Strategy for the Newton Method
    di Serafino, Daniela
    Toraldo, Gerardo
    Viola, Marco
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 177 - 185
  • [28] A gradient-based calibration method for the Heston model
    Clevenhaus, Anna
    Totzeck, Claudia
    Ehrhardt, Matthias
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (9-10) : 1094 - 1112
  • [29] A gradient-based parameter identification method for time-delay chaotic systems
    Chai, Qinqin
    Loxton, Ryan
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 6566 - 6570
  • [30] Modeling Spatial Anisotropic Relationships Using Gradient-Based Geographically Weighted Regression
    Yan, Jinbiao
    Wu, Bo
    Duan, Xiaoqi
    JOURNAL OF PLANNING LITERATURE, 2024, 39 (03) : 492 - 492