Periodic Solutions in the van der Pol Oscillator: A Comparison

被引:0
|
作者
Bares, Cinthya A. [1 ]
Moiola, Jorge L. [2 ,3 ]
Calandrini, Guillermo L. [2 ,3 ]
机构
[1] Univ Nacl Sur, Dept Matemat, Avda Alem 1253, RA-8000 Bahia Blanca, Argentina
[2] Univ Nacl Sur, Dept Ing Electr, RA-8000 BahIa Blanca, Argentina
[3] UNS, CONICET, IIIE, San Andres 800,B8000CPB, Bahia Blanca, Argentina
关键词
Hopf bifurcation; frequency method; asymptotic expansion; LIMIT-CYCLE; EQUATION; VALUES;
D O I
10.1142/S0218127425500592
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An expansion of the periodic solution of the van der Pol oscillator for small values of the damping parameter epsilon is shown via a frequency domain method and harmonic balancing technique. An approximation of the amplitude of the first harmonic and the frequency omega in terms of epsilon is obtained by an analytical form instead of the conventional algorithmic approach used before with this methodology. Its decomposition under different harmonics sin k theta and cos k theta where k = 3, 5, 7 is written in terms of their leading coefficients in power series of epsilon to make easy comparisons with other methods in the literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] BIFURCATION STRUCTURE OF A VAN DER POL OSCILLATOR SUBJECTED TO NONSINUSOIDAL PERIODIC EXCITATION
    Simo, H.
    Woafo, P.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (01):
  • [22] Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator
    Xindong Ma
    Qinsheng Bi
    Lifeng Wang
    Journal of Nonlinear Science, 2022, 32
  • [23] Periodic bursting oscillations in a hybrid Rayleigh–Van der Pol–Duffing oscillator
    Feng Zhao
    Xindong Ma
    Shuqian Cao
    Nonlinear Dynamics, 2023, 111 : 2263 - 2279
  • [24] ANALECTS ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS FOR NONSMOOTH DIFFERENTIAL EQUATIONS WITH APPLICATION TO THE NONSMOOTH VAN DER POL OSCILLATOR
    Buica, Adriana
    Llibre, Jaume
    Makarenkov, Oleg
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) : 2478 - 2495
  • [25] The coexistence of periodic, almost-periodic and chaotic attractors in the van der Pol Duffing oscillator
    SzemplinskaStupnicka, W
    Rudowski, J
    JOURNAL OF SOUND AND VIBRATION, 1997, 199 (02) : 165 - 175
  • [26] ASYNCHRONOUS QUENCHING OF VAN DER POL OSCILLATOR
    DEWAN, EM
    LASHINSKY, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (02) : 212 - +
  • [27] Complex order van der Pol oscillator
    Carla M. A. Pinto
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2011, 65 : 247 - 254
  • [28] A model of the distributed Van der Pol oscillator
    Kambulov, VF
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1121 - 1124
  • [29] Complex order van der Pol oscillator
    Pinto, Carla M. A.
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2011, 65 (03) : 247 - 254
  • [30] Potential landscape of the Van der Pol oscillator
    Lu, Qiang
    Yue, Chao
    Zhang, Zhaochen
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 51 - 54