Tumor Microenvironment-Responsive MnO x -Mesoporous Carbon Nanoparticles for Enhanced Chemodynamic Synergistic Antitumor Therapy

被引:0
|
作者
Zhang, Rongrong [1 ,2 ]
Wang, Tingting [1 ,2 ]
Shen, Haiyu [1 ,2 ]
Zhou, Xue [3 ]
Han, Qinghe [4 ]
Li, Lu [3 ]
Zhang, Lingyu [3 ]
Wang, Chungang [3 ]
Dong, Xiangting [1 ,2 ]
机构
[1] Changchun Univ Sci & Technol, Chongqing Res Inst, Chongqing 401135, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Chem & Environm Engn, Changchun 130022, Jilin, Peoples R China
[3] Northeast Normal Univ, Fac Chem, 5268 Renmin St, Changchun 130024, Jilin, Peoples R China
[4] Second Hosp Jilin Univ, Radiol Dept, Changchun 130041, Peoples R China
基金
中国国家自然科学基金;
关键词
mesoporous carbon; photothermal therapy; chemodynamictherapy; enhanced synergistic therapy; GSH-responsiveness; CANCER; IMMUNOTHERAPY; NANOSPHERES;
D O I
10.1021/acsanm.4c06257
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developing nanomedicines with simultaneous diagnosis and treatment functions is a promising therapeutic strategy for cancer therapy. Herein, multifunctional manganese oxide-mesoporous carbon nanoparticles (MnO x -MCN NPs) were designed for magnetic resonance imaging (MRI)-guided chemotherapy, photothermal therapy (PTT), and chemodynamic therapy (CDT). The excellent photothermal conversion efficiency (44.2%) and outstanding fenton-like catalytic activity endowed MnO x -MCN NPs with a PTT/CDT synergistic therapy. Furthermore, with their unique mesoporous structure, MnO x -MCN NPs can also act as a drug delivery carrier for encapsulating chemotherapy agent doxorubicin (DOX). The mild acid tumor microenvironment (TME) and near-infrared (NIR) heat induced the release of DOX. In addition, the NIR laser enhanced the CDT efficiency of MnO x -MCN NPs, thus generating a synergistic chemotherapy/PTT/CDT effect. Extracellular experiments demonstrated that the heat generated by laser irradiation of MnO x -MCN NPs could encourage the generation of center dot OH. More importantly, MnO x -MCN NPs displayed a superior synergistic anticancer efficiency both in vitro and in vivo. Such elaborately synthesized nanomaterial provides a paradigm for the design of other multifunction nanoagents.
引用
收藏
页码:2763 / 2773
页数:11
相关论文
共 50 条
  • [11] Tumor microenvironment-responsive thermoelectric scaffold for on-demand antitumor therapy
    Gao, Xiuwen
    Deng, Woding
    Tan, Jinhui
    Shuai, Xiong
    Zan, Jun
    Ye, Tailai
    Luo, Kaiwu
    Qi, Fangwei
    Wei, Yujun
    Shuai, Cijun
    MATERIALS TODAY CHEMISTRY, 2025, 43
  • [12] Tumor Microenvironment-Responsive Multinucleated Nanocomplexes Loaded with Carbon Dots for Combined Photothermal/Chemodynamic Therapy of Breast Cancer
    Zhu, Zihan
    Zhang, Yan
    He, Cui
    Jin, Yimin
    Bian, Wei
    Tang, Xinjing
    Wang, Jing
    CHEMMEDCHEM, 2025,
  • [13] A tumor microenvironment-responsive microneedle patch for chemodynamic therapy of oral squamous cell carcinoma
    Zhao, Siyu
    Li, Yue
    Cheng, Bo
    NANOSCALE ADVANCES, 2023, 5 (22): : 6162 - 6169
  • [14] A tumor microenvironment-responsive poly(amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy
    Yingchao Hao
    Yue Gao
    Yu Fan
    Changchang Zhang
    Mengsi Zhan
    Xueyan Cao
    Xiangyang Shi
    Rui Guo
    Journal of Nanobiotechnology, 20
  • [15] A tumor microenvironment-responsive poly(amidoamine) dendrimer nanoplatform for hypoxia-responsive chemo/chemodynamic therapy
    Hao, Yingchao
    Gao, Yue
    Fan, Yu
    Zhang, Changchang
    Zhan, Mengsi
    Cao, Xueyan
    Shi, Xiangyang
    Guo, Rui
    JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)
  • [16] Tumor microenvironment-responsive MnSiO3-Pt@BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy
    Fan Jiang
    Chunzheng Yang
    Binbin Ding
    Shuang Liang
    Yajie Zhao
    Ziyong Cheng
    Min Liu
    Bengang Xing
    Ping'an Ma
    Jun Lin
    Chinese Chemical Letters, 2022, 33 (06) : 2959 - 2964
  • [17] Tumor microenvironment responsive mesoporous silica nanoparticles for dual delivery of doxorubicin and chemodynamic therapy (CDT) agent
    Zhang, Yuan
    Eltayeb, Omer
    Meng, Yating
    Zhang, Guomei
    Zhang, Yan
    Shuang, Shaomin
    Dong, Chuan
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (06) : 2578 - 2586
  • [18] Tumor microenvironment-responsive MnSiO3-Pt@BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy
    Jiang, Fan
    Yang, Chunzheng
    Ding, Binbin
    Liang, Shuang
    Zhao, Yajie
    Cheng, Ziyong
    Liu, Min
    Xing, Bengang
    Ma, Ping'an
    Lin, Jun
    CHINESE CHEMICAL LETTERS, 2022, 33 (06) : 2959 - 2964
  • [19] A Tumor Microenvironment-Responsive Theranostic Agent for Synergetic Therapy of Disulfiram-Based Chemotherapy and Chemodynamic Therapy
    Zhang, Hao
    Lv, Zhijia
    Xue, Dongzhi
    Zhang, Tianqi
    Jin, Longhai
    Cao, Yue
    Zhang, Shuai
    Wang, Yinghui
    Zhang, Hongjie
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (44): : 10880 - 10885
  • [20] Facile synthesis of a tumor microenvironment-responsive nanomaterial with metallic polyphenol-encapsulated for enhanced synergistic therapy
    Yu, Kaige
    Kou, Nuo
    Zhang, Shouqiang
    Cao, Tianqi
    Wu, Hanqing
    Zhou, Jing
    JOURNAL OF RARE EARTHS, 2024, 42 (10) : 1895 - 1902