PROJECTIONS OF THE RANDOM MENGER SPONGE

被引:0
|
作者
Orgovanyi, Vilma [1 ,2 ]
Simon, Karoly [1 ,3 ]
机构
[1] HUN REN BME Stochast Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Eotvos Lorand Res Network, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
Random fractals; Mandelbrot percolation; Branching processes in random environments; SELF-SIMILAR MEASURES; DIMENSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove theorems about a special family of random self-similar sets on the line, we apply these theorems to get the Hausdorff dimension, the Lebesgue measure and existence of interior points of some projections of the random right-angled Sierpiski gasket, the random Sierpinski carpet and the random Menger sponge. The Menger sponge is one of the most well-known example of self-similar sets in R-3. The Mandelbrot percolation process restricted to the cubes, which are the building blocks of the Menger sponge, yields the random Menger sponge, a random self-similar fractal in R-3. We examine its orthogonal projections to straight lines, from the point of Lebesgue measure and existence of interior points. In particular this yields random self-similar sets on the line with positive Lebesgue measure and empty interior. Moreover, we give a sharp threshold for the probability above which the projections of the random Menger sponge contains an interval in all directions.
引用
收藏
页码:893 / 936
页数:44
相关论文
共 50 条
  • [21] A fast random walk algorithm for computing diffusion-weighted NMR signals in multi-scale porous media: A feasibility study for a Menger sponge
    Grebenkov, Denis S.
    Nguyen, Hang T.
    Li, Jing-Rebecca
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 56 - 59
  • [22] Random Weighted Projections, Random Quadratic Forms and Random Eigenvectors
    Van Vu
    Wang, Ke
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (04) : 792 - 821
  • [23] Analysis of electromagnetic response of 3-D dielectric fractals of menger sponge type
    Semouchkina, Elena
    Miyamoto, Yoshinari
    Kirihara, Soshu
    Semouchkin, George
    Lanagan, Michael
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2007, 55 (06) : 1305 - 1313
  • [24] Combining ELMs with Random Projections
    Gastaldo, Paolo
    Zunino, Rodolfo
    Cambria, Erik
    Decherchi, Sergio
    IEEE INTELLIGENT SYSTEMS, 2013, 28 (06) : 46 - 48
  • [25] Random projections for Bayesian regression
    Leo N. Geppert
    Katja Ickstadt
    Alexander Munteanu
    Jens Quedenfeld
    Christian Sohler
    Statistics and Computing, 2017, 27 : 79 - 101
  • [26] Random Projections with Asymmetric Quantization
    Li, Xiaoyun
    Li, Ping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Linear Regression With Random Projections
    Maillard, Odalric-Ambrym
    Munos, Remi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2735 - 2772
  • [28] Random projections of regular polytopes
    Böröczky Jr. K.
    Henk M.
    Archiv der Mathematik, 1999, 73 (6) : 465 - 473
  • [29] Projections of random covering sets
    Chen, Changhao
    Koivusalo, Henna
    Li, Bing
    Suomala, Ville
    JOURNAL OF FRACTAL GEOMETRY, 2014, 1 (04) : 449 - 467
  • [30] Approximation of Projections of Random Vectors
    Elizabeth Meckes
    Journal of Theoretical Probability, 2012, 25 : 333 - 352