PROJECTIONS OF THE RANDOM MENGER SPONGE

被引:0
|
作者
Orgovanyi, Vilma [1 ,2 ]
Simon, Karoly [1 ,3 ]
机构
[1] HUN REN BME Stochast Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Eotvos Lorand Res Network, Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
Random fractals; Mandelbrot percolation; Branching processes in random environments; SELF-SIMILAR MEASURES; DIMENSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove theorems about a special family of random self-similar sets on the line, we apply these theorems to get the Hausdorff dimension, the Lebesgue measure and existence of interior points of some projections of the random right-angled Sierpiski gasket, the random Sierpinski carpet and the random Menger sponge. The Menger sponge is one of the most well-known example of self-similar sets in R-3. The Mandelbrot percolation process restricted to the cubes, which are the building blocks of the Menger sponge, yields the random Menger sponge, a random self-similar fractal in R-3. We examine its orthogonal projections to straight lines, from the point of Lebesgue measure and existence of interior points. In particular this yields random self-similar sets on the line with positive Lebesgue measure and empty interior. Moreover, we give a sharp threshold for the probability above which the projections of the random Menger sponge contains an interval in all directions.
引用
收藏
页码:893 / 936
页数:44
相关论文
共 50 条
  • [1] Random walks on the Menger sponge
    Kozak, JJ
    CHEMICAL PHYSICS LETTERS, 1997, 275 (3-4) : 199 - 202
  • [2] Random packing of spheres in Menger sponge
    Ciesla, Michal
    Barbasz, Jakub
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (21):
  • [3] Menger Sponge
    Golberg, E. Laura
    JOURNAL OF HUMANISTIC MATHEMATICS, 2016, 6 (02): : 227 - 227
  • [4] GEODESICS IN THE SIERPINSKI CARPET AND MENGER SPONGE
    Berkove, Ethan
    Smith, Derek
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [5] Sound absorption by Menger sponge fractal (L)
    Kawabe, Tetsuji
    Miyazaki, Takatsuna
    Oka, Daisuke
    Koyanagi, Sin'ichiro
    Hinokidani, Atsushi
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2009, 125 (05): : 2830 - 2833
  • [6] Light scattering and transmission spectra of the Menger sponge fractal
    K. Sakoda
    S. Kirihara
    Y. Miyamoto
    M. W. Takeda
    K. Honda
    Applied Physics B, 2005, 81 : 321 - 324
  • [7] LCAO approximation for scaling properties of the Menger sponge fractal
    Sakoda, Kazuaki
    OPTICS EXPRESS, 2006, 14 (23) : 11372 - 11384
  • [8] Light scattering and transmission spectra of the Menger sponge fractal
    Sakoda, K
    Kirihara, S
    Miyamoto, Y
    Takeda, MW
    Honda, K
    APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 81 (2-3): : 321 - 324
  • [9] Usage of infinitesimals in the Menger's Sponge model of porosity
    Vita, Maria C.
    De Bartolo, Samuele
    Fallico, Carmine
    Veltri, Massimo
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (16) : 8187 - 8195
  • [10] Design of Menger sponge fractal structural NiTi as bone implants
    Zhang, Xudong
    Yang, Fan
    Liu, Baosheng
    Deng, Junkai
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2021, 29 (08)