Application of a machine learning model for early prediction of in-hospital cardiac arrests: Retrospective observational cohort study

被引:0
|
作者
Crespi, L. Socias [1 ,2 ,3 ]
Madronal, L. Gutierrez [1 ,2 ,4 ]
Sarubbo, M. Fiorella [4 ,6 ]
Borges-Sa, M. [1 ,2 ]
Garcia, A. Serrano [5 ]
Ramos, D. Lopez [5 ]
Garcia-Hinojosa, C. Pruenza [5 ]
Garijo, E. Martin [5 ]
机构
[1] Son Llatzer Univ Hosp, Intens Care Dept, Crta Manacor Km 4, Palma De Mallorca 07198, Spain
[2] Univ Balearic Isl, Fac Med, Dept Med, Crta Valldemossa Km 7 5, Palma De Mallorca, Spain
[3] Hlth Res Inst Balearic Isl IdISBa, Grp Crit Patient, Palma De Mallorca 07198, Spain
[4] Son Llatzer Univ Hosp, Res Unit, Crta Manacor Km 4, Palma De Mallorca 07198, Spain
[5] Univ Autonoma Madrid, Knowledge Engn Inst, Madrid, Spain
[6] Univ Balearic Isl, Fac Sci, Dept Biol, Crta Valldemossa Km 7 5, Palma De Mallorca, Spain
关键词
In-hospital cardiac arrest; Heart arrest; Machine learning; Artificial intelligence; Intensive Care Unit; Critical care; Big Data; Diagnosis; Prognosis; Prevention; EARLY WARNING SCORE; INTENSIVE-CARE; DETERIORATION; VALIDATION;
D O I
10.1016/j.medin.2024.06.014
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Objective: To describe the results of the application of a Machine Learning (ML) model to predict in-hospital cardiac arrests (ICA) 24 hours in advance in the hospital wards. Design: Retrospective observational cohort study. Setting: Hospital Wards. Patients: Data were extracted from the hospital's Electronic Health Record (EHR). The resulting database contained a total of 750 records corresponding to 620 different patients (370 patients with ICA and 250 control), between may 2009 and december 2021. Interventions: No. Main variables of interest: As predictors of ICA, a set of 28 variables including personal history, vital signs and laboratory data was employed. Models: For the early prediction of ICA, predictive models based on the following ML algorithms and using the mentioned variables, were developed and compared: K Nearest Neighbours, Support Vector Machine, Multilayer Perceptron, Random Forest, Gradient Boosting and Custom Ensemble of Gradient Boosting estimators (CEGB).
引用
收藏
页码:88 / 95
页数:8
相关论文
共 50 条
  • [31] Extracorporeal cardiopulmonary resuscitation for refractory in-hospital cardiac arrest: A retrospective cohort study
    Bourcier, Simon
    Desnos, Cyrielle
    Clement, Marina
    Hekimian, Guillaume
    Brechot, Nicolas
    Taccone, Fabio Silvio
    Belliato, Mirko
    Pappalardo, Federico
    Broman, Lars Mikael
    Malfertheiner, Maximilian Valentin
    Lunz, Dirk
    Schmidt, Matthieu
    Leprince, Pascal
    Combes, Alain
    Lebreton, Guillaume
    Luyt, Charles-Edouard
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 350 : 48 - 54
  • [32] Machine learning algorithms for improved prediction of in-hospital outcomes after moderate-to-severe traumatic brain injury: a Chinese retrospective cohort study
    Zhang, Zan
    Wang, Sheng-ju
    Chen, Kun
    Yin, An-an
    Lin, Wei
    He, Ya-long
    ACTA NEUROCHIRURGICA, 2023, 165 (08) : 2237 - 2247
  • [33] Extracorporeal cardiopulmonary resuscitation for refractory in-hospital cardiac arrest: A retrospective cohort study
    Bourcier, Simon
    Desnos, Cyrielle
    Clement, Marina
    Hekimian, Guillaume
    Brechot, Nicolas
    Taccone, Fabio Silvio
    Belliato, Mirko
    Pappalardo, Federico
    Broman, Lars Mikael
    Malfertheiner, Maximilian Valentin
    Lunz, Dirk
    Schmidt, Matthieu
    Leprince, Pascal
    Combes, Alain
    Lebreton, Guillaume
    Luyt, Charles-Edouard
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 350 : 48 - 54
  • [34] Avoiding adult in-hospital cardiac arrest: A retrospective cohort study to determine preventability
    Bingham, Gordon
    Bilgrami, Irma
    Sandford, Mandy
    Larwill, Sarah
    Orosz, Judit
    Luckhoff, Carl
    Kambourakis, Tony
    AUSTRALIAN CRITICAL CARE, 2018, 31 (04) : 219 - 225
  • [35] The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study
    Xiao, Jialong
    Mo, Miao
    Wang, Zezhou
    Zhou, Changming
    Shen, Jie
    Yuan, Jing
    He, Yulian
    Zheng, Ying
    JMIR MEDICAL INFORMATICS, 2022, 10 (02)
  • [36] Early Prediction of Cardiac Arrest in the Intensive Care Unit UsingExplainable Machine Learning:Retrospective Study
    Kim, Yun Kwan
    Seo, Won-Doo
    Lee, Sun Jung
    Koo, Ja Hyung
    Kim, Gyung Chul
    Song, Hee Seok
    Lee, Minji
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [37] Interpretable Machine Learning to Optimize Early In-Hospital Mortality Prediction for Elderly Patients with Sepsis: A Discovery Study
    Ke X.
    Zhang F.
    Huang G.
    Wang A.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [38] Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study
    Nanayakkara, Shane
    Fogarty, Sam
    Tremeer, Michael
    Ross, Kelvin
    Richards, Brent
    Bergmeir, Christoph
    Xu, Sheng
    Stub, Dion
    Smith, Karen
    Tacey, Mark
    Liew, Danny
    Pilcher, David
    Kaye, David M.
    PLOS MEDICINE, 2018, 15 (11)
  • [39] Machine learning based framework to predict cardiac arrests in a paediatric intensive care unit: Prediction of cardiac arrests
    Matam, B. R.
    Duncan, Heather
    Lowe, David
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2019, 33 (04) : 713 - 724
  • [40] Development of early prediction model of in-hospital cardiac arrest based on laboratory parameters
    Xinhuan Ding
    Yingchan Wang
    Weiyi Ma
    Yaojun Peng
    Jingjing Huang
    Meng Wang
    Haiyan Zhu
    BioMedical Engineering OnLine, 22