Machine Learning-Driven Dynamic Maps Supporting Wildfire Risk Management

被引:0
|
作者
Perello, Nicole [1 ,2 ]
Meschi, Giorgio [2 ]
Trucchia, Andrea [2 ]
D'Andrea, Mirko [2 ]
Baghino, Francesco [1 ,2 ]
degli Esposti, Silvia [2 ]
Fiorucci, Paolo [2 ]
机构
[1] Univ Genoa, Dept Informat Bioengn Robot & Syst Engn, Via AllOpera Pia 13, I-16145 Genoa, Italy
[2] CIMA Res Fdn, Via A Magliotto 2, I-17100 Savona, Italy
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 02期
关键词
Wildfire; risk management; machine learning; time series classification;
D O I
10.1016/j.ifacol.2024.07.093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent decades have seen an increase in wildfires activity, posing risks to human settlements, and forcing exploration of new technologies for wildfire risk management. Utilizing Machine Learning in Time Series classification, this study produces decision support maps for Civil Protection system in Italy, which is responsible for coordinating national firefighting air fleet. Trained on past events data, the model gives daily indication on wildfire occurrence and aerial support requests for each administrative unit utilizing time series of Forest Fire Danger Rating indexes from RISICO model. Despite its recent implementation, it performed properly in 2023, showcasing model's potential for decision support. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [21] Machine Learning-Driven Model to Analyze Particular Conditions of Contracts: A Multifunctional and Risk Perspective
    Yang, Jianxiong
    Chen, Yongqiang
    Yao, Hongjiang
    Zhang, Bingxin
    JOURNAL OF MANAGEMENT IN ENGINEERING, 2022, 38 (05)
  • [22] Machine Learning-Driven Approaches for Precision Antenna Alignment
    Patel, Nimesh A.
    Rao, Ramprasad
    Christensen, Robert
    Keating, Garrett
    Laguana, Kristen
    Mills, Adam
    Ramos, Angelu
    Schimpf, Shelbi H.
    Smith, Rachel
    Yen, Sheng-Feng
    Leiker, Patrick S.
    Norton, Timothy
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VIII, 2024, 13101
  • [23] TCLPI: Machine Learning-Driven Framework for Hybrid Learning Mode Identification
    Verma, Chaman
    Illes, Zoltan
    Kumar, Deepak
    IEEE ACCESS, 2024, 12 : 98029 - 98045
  • [24] Machine learning-driven energy management of a hybrid nuclear-wind-solar-desalination plant
    Pombo, Daniel Vazquez
    Bindner, Henrik W.
    Spataru, Sergiu, V
    Sorensen, Poul E.
    Rygaard, Martin
    DESALINATION, 2022, 537
  • [25] Machine Learning-Driven Lending Decisions in Bank Consumer Finance
    Wang, Xiaoning
    Tang, Yi
    Quaranta, Anna Grazia
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS AND SUPPLY CHAIN MANAGEMENT, 2024, 17 (01)
  • [26] Enhancing particulate matter risk assessment with novel machine learning-driven toxicity threshold prediction
    Jairi, Idriss
    Rekbi, Amelle
    Ben-Othman, Sarah
    Hammadi, Slim
    Canivet, Ludivine
    Zgaya-Biau, Hayfa
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [27] Machine Learning-Driven Maintenance Order Generation in Assembly Lines
    Princz, Gabor
    Shaloo, Masoud
    Reisacher, Fabian
    Erol, Selim
    IFAC PAPERSONLINE, 2024, 58 (19): : 139 - 144
  • [28] Towards Machine Learning-Driven EEG Biomarkers for Precision Mental
    Wu, Wei
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S64 - S64
  • [29] Machine learning-driven 3D printing: A review
    Zhang, Xijun
    Chu, Dianming
    Zhao, Xinyue
    Gao, Chenyu
    Lu, Lingxiao
    He, Yan
    Bai, Wenjuan
    APPLIED MATERIALS TODAY, 2024, 39
  • [30] Machine learning-driven intelligent tire wear detection system
    Tong, Zexiang
    Cao, Yaoguang
    Wang, Rui
    Chen, Yuyi
    Li, Zhuoyang
    Lu, Jiayi
    Yang, Shichun
    MEASUREMENT, 2025, 242