Parts-per-Billion Detection of Hydrogen Sulfide via Cavity Ring-Down Spectroscopy

被引:0
|
作者
Xu, Wei [1 ]
Wang, Xuejun [1 ]
Zhao, Lei [1 ]
Zou, Jun [1 ]
Chen, Bing [2 ]
机构
[1] Wuhan Second Ship Design and Research Institute, Wuhan,430205, China
[2] Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei,230031, China
基金
中国国家自然科学基金;
关键词
Absorption spectroscopy - Atomic spectroscopy - Chemical sensors - Gas detectors - Laser mode locking - Laser safety - Spectrum analyzers;
D O I
10.3390/photonics12030284
中图分类号
学科分类号
摘要
Rapid and precise detection of hydrogen sulfide (H2S) at trace levels is critical for industrial safety and environmental air quality monitoring, yet existing methods often struggle with cost, speed, or sensitivity. A cost-effective cavity ring-down spectroscopy (CRDS) analyzer is presented, incorporating a novel digital locking circuit for sequential laser-cavity mode matching. This system demonstrates rapid and precise hydrogen sulfide (H2S) detection capability at parts-per-billion (ppb) concentration levels. Compared to traditional wavelength meters, our system delivers a 140-fold improvement in frequency interval precision (0.07 MHz, 0.027% relative uncertainty). Allan variance analysis under vacuum conditions demonstrates a sensitivity limit of 3 × 10−12 cm−1 at a 60-s averaging time. Validated through calibrated gas dilution tests, the analyzer detects a 4 ppb H2S absorption signal with a signal-to-noise ratio (SNR) > 6, establishing a 2 ppb detection limit (3σ criterion). This innovative approach meets stringent industrial and environmental requirements, offering a significant advancement in trace gas-sensing technology. © 2025 by the authors.
引用
收藏
相关论文
共 50 条
  • [31] Cavity ring-down spectroscopy in the liquid phase
    Xu, SC
    Sha, GH
    Xie, JC
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (02): : 255 - 258
  • [32] On electronic type cavity ring-down spectroscopy
    Hirabayashi, Yuki
    Tanimoto, Hirokazu
    Maeda, Yoshinobu
    IEEJ Transactions on Sensors and Micromachines, 2014, 134 (08) : 243 - 246
  • [33] Towards Supercontinuum Cavity Ring-Down Spectroscopy
    K. Stelmaszczyk
    M. Fechner
    P. Rohwetter
    M. Queißer
    A. Czyżewski
    T. Stacewicz
    L. Wöste
    Applied Physics B, 2009, 94 : 369 - 373
  • [34] Cavity ring-down spectroscopy of the benzyl radical
    Tonokura, K
    Koshi, M
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (22): : 4457 - 4461
  • [35] The superposition principle and cavity ring-down spectroscopy
    Lehmann, KK
    Romanini, D
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (23): : 10263 - 10277
  • [36] Towards Supercontinuum Cavity Ring-Down Spectroscopy
    Stelmaszczyk, K.
    Fechner, M.
    Rohwetter, P.
    Queisser, M.
    Czyzewski, A.
    Stacewicz, T.
    Woeste, L.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 94 (03): : 369 - 373
  • [37] Cavity ring-down spectroscopy with diode array
    Nikolaev, Igor V.
    Ochkin, Vladimir N.
    Spiridonov, Maxim V.
    Tskhai, Sergei N.
    15TH SYMPOSIUM ON HIGH-RESOLUTION MOLECULAR SPECTROSCOPY, 2006, 6580
  • [38] Novel detection of aerosols: combined cavity ring-down and fluorescence spectroscopy
    Richman, BA
    Kachanov, AA
    Paldus, BA
    Strawa, AW
    OPTICS EXPRESS, 2005, 13 (09): : 3376 - 3387
  • [39] Measuring pressure with cavity ring-down spectroscopy
    van Zee, RD
    Looney, JP
    Hodges, JT
    ADVANCED SENSORS AND MONITORS FOR PROCESS INDUSTRIES AND THE ENVIRONMENT, 1999, 3535 : 46 - 56
  • [40] Cavity-locked ring-down spectroscopy
    Paldus, BA
    Harb, CC
    Spence, TG
    Wilke, B
    Xie, J
    Harris, JS
    Zare, RN
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (08) : 3991 - 3997