Emotion recognition and interaction of smart education environment screen based on deep learning networks

被引:0
|
作者
Zhao, Wei [1 ]
Qiu, Liguo [1 ]
机构
[1] Hunan Coll Informat, Dept Informat Engn, Changsha 410200, Peoples R China
关键词
deep neural network; MTCNN; 3D-CNN; intelligent education; emotion recognition;
D O I
10.1515/jisys-2024-0082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smart education environments combine technologies such as big data, cloud computing, and artificial intelligence to optimize and personalize the teaching and learning process, thereby improving the efficiency and quality of education. This article proposes a dual-stream-coded image sentiment analysis method based on both facial expressions and background actions to monitor and analyze learners' behaviors in real time. By integrating human facial expressions and scene backgrounds, the method can effectively address the occlusion problem in uncontrolled environments. To enhance the accuracy and efficiency of emotion recognition, a multi-task convolutional network is employed for face extraction, while 3D convolutional neural networks optimize the extraction process of facial features. Additionally, the adaptive learning screen adjustment system proposed in this article dynamically adjusts the presentation of learning content to optimize the learning environment and enhance learning efficiency by monitoring learners' expressions and reactions in real time. By analyzing the experimental results on the Emotic dataset, the emotion recognition model in this article shows high accuracy, especially in the recognition of specific emotion categories. This research significantly contributes to the field of smart education environments by providing an effective solution for real-time emotion recognition.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Smart environment design planning for smart city based on deep learning
    Liu, Lili
    Zhang, Yue
    Sustainable Energy Technologies and Assessments, 2021, 47
  • [22] Deep learning based Affective Model for Speech Emotion Recognition
    Zhou, Xi
    Guo, Junqi
    Bie, Rongfang
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 841 - 846
  • [23] Research on Emotion Recognition Based on Deep Learning for Mental Health
    Peng, Xianglan
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (01): : 127 - 132
  • [24] Deep Learning Based Emotion Recognition from Chinese Speech
    Zhang, Weishan
    Zhao, Dehai
    Chen, Xiufeng
    Zhang, Yuanjie
    INCLUSIVE SMART CITIES AND DIGITAL HEALTH, 2016, 9677 : 49 - 58
  • [25] Emotion recognition of social media users based on deep learning
    Li C.
    Li F.
    PeerJ Computer Science, 2023, 9
  • [26] Deep Learning Approach towards Emotion Recognition Based on Speech
    Butala, Padmanabh
    Pawar, Rajendra
    Jadhav, Nagesh
    Kalangan, Manas
    Dhumal, Aniket
    Kakad, Sahil
    JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH, 2024, 6 (03): : 16 - 24
  • [27] Facial emotion recognition based on deep transfer learning approach
    Aziza Sultana
    Samrat Kumar Dey
    Md. Armanur Rahman
    Multimedia Tools and Applications, 2023, 82 : 44175 - 44189
  • [28] Deep Learning Based Emotion Recognition and Visualization of Figural Representation
    Lu, Xiaofeng
    FRONTIERS IN PSYCHOLOGY, 2022, 12
  • [29] Facial Emotion Recognition in Verbal Communication Based on Deep Learning
    Alsharekh, Mohammed F.
    SENSORS, 2022, 22 (16)
  • [30] Facial emotion recognition based on deep transfer learning approach
    Sultana, Aziza
    Dey, Samrat Kumar
    Rahman, Md. Armanur
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 44175 - 44189