Asynchronous Distributed-Memory Parallel Algorithms for Influence Maximization

被引:0
|
作者
Singhal, Shubhendra Pal [1 ]
Hati, Souvadra [1 ]
Young, Jeffrey [1 ]
Sarkar, Vivek [1 ]
Hayashi, Akihiro [1 ]
Vuduc, Richard [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
Influence maximization; FA-BSP; PGAS; IMM; NETWORKS;
D O I
10.1109/SC41406.2024.00108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Influence maximization (IM) is the problem of finding the k most influential nodes in a graph. We propose distributed-memory parallel algorithms for the two main kernels of a state-of-the-art implementation of one IM algorithm, influence maximization via martingales (IMM). The baseline relies on a bulk-synchronous parallel approach and uses replication to reduce communication and achieve approximate load balance, at the cost of synchronization and high memory requirements. By contrast, our method fully distributes the data, thereby improving memory scalability, and uses fine-grained asynchronous parallelism to improve network utilization and the cost of doing more communication. We show our design and implementation can achieve up to 29.6x speedup over the MPI-based state-of-the-art on synthetic and real-world network graphs. Moreover, ours is the first implementation that can run IMM to find influencers in the 'twitter' graph (41M nodes and 1.4B edges) in 200 seconds using 8K CPU cores of NERSC Perlmutter supercomputer.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] STORE COHERENCY IN A PARALLEL DISTRIBUTED-MEMORY MACHINE
    BORRMANN, L
    ISTAVRINOS, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 487 : 32 - 41
  • [22] Asynchronous Distributed-Memory Triangle Counting and LCC with RMA Caching
    Strausz, Andras
    Vella, Flavio
    Di Girolamo, Salvatore
    Besta, Maciej
    Hoefler, Torsten
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 291 - 301
  • [23] An asynchronous algorithm for balancing unpredictable workload on distributed-memory machines
    Chung, Y
    Park, JW
    Yoon, SH
    ETRI JOURNAL, 1998, 20 (04) : 346 - 360
  • [24] Allocating data to distributed-memory multiprocessors by genetic algorithms
    Mansour, Nashat, 1600, John Wiley & Sons Ltd, Chichester, United Kingdom (06):
  • [25] MAPPING AND COLORING SCHEMES FOR DISTRIBUTED-MEMORY PARALLEL PROCESSORS
    POMMERELL, C
    ANNARATONE, M
    FICHTNER, W
    AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1990, 44 (05): : 353 - 367
  • [26] Atmospheric data assimilation on distributed-memory parallel supercomputers
    Ding, CHQ
    Lyster, PM
    Larson, JW
    Guo, J
    da Silva, A
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1998, 1401 : 115 - 124
  • [27] PPT - A PARALLEL PROGRAMMING TOOL FOR DISTRIBUTED-MEMORY MULTIPROCESSORS
    CHUNG, YC
    HO, WH
    LIU, CC
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1995, 18 (03) : 365 - 378
  • [28] Distributed-Memory Parallel Symmetric Nonnegative Matrix Factorization
    Eswar, Srinivas
    Hayashi, Koby
    Ballard, Grey
    Kannan, Ramakrishnan
    Vuduc, Richard
    Park, Haesun
    PROCEEDINGS OF SC20: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC20), 2020,
  • [29] Weak Scalability Analysis of the Distributed-Memory Parallel MLFMA
    Michiels, Bart
    Fostier, Jan
    Bogaert, Ignace
    De Zutter, Daniel
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (11) : 5567 - 5574
  • [30] TDR: A distributed-memory parallel routing algorithm for FPGAs
    Cabral, LAF
    Aude, RS
    Maculan, N
    FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS: RECONFIGURABLE COMPUTING IS GOING MAINSTREAM, 2002, 2438 : 263 - 270