HARMONIC MAPS ON WEIGHTED RIEMANNIAN FOLIATIONS

被引:0
|
作者
Fu, Xueshan [1 ]
DAL Jung, Seoung [2 ]
Qian, Jinhua [3 ]
机构
[1] Shenyang Univ Technol, Dept Math, Shenyang 110870, Peoples R China
[2] Jeju Natl Univ, Dept Math, Jeju 63243, South Korea
[3] Northeastern Univ, Dept Math, Shenyang 110819, Peoples R China
关键词
Weighted foliation; transversal Bakry-E<acute accent>mery Ricci tensor; transversally f-harmonic map; (.T; T ')f-harmonic map; Liouville type theorem; transverse conservation laws; METRIC-MEASURE-SPACES; GEOMETRY; CURVATURE; MANIFOLDS; TOPOLOGY; THEOREMS;
D O I
10.4134/JKMS.j240176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On foliations, there are two kinds of harmonic maps, that is, transversally harmonic map and (.T, .T ')-harmonic map which are equivalent when the foliation is minimal. In this paper, we study the properties of transversally f-harmonic and (.T,.T ')f-harmonic maps on weighted Riemannian foliations. Here, f is a basic function. And we investigate the relations between transversal stress-energy tensors and transversally f-harmonic maps.
引用
收藏
页码:443 / 464
页数:22
相关论文
共 50 条
  • [21] Stationary harmonic maps into complete Riemannian manifold
    Xiangao Liu
    Science in China Series A: Mathematics, 1999, 42 : 1184 - 1192
  • [22] Exponentially harmonic maps of complete Riemannian manifolds
    Omori, Toshiaki
    MANUSCRIPTA MATHEMATICA, 2020, 161 (1-2) : 205 - 212
  • [23] Levi Harmonic Maps of Contact Riemannian Manifolds
    Sorin Dragomir
    Domenico Perrone
    The Journal of Geometric Analysis, 2014, 24 : 1233 - 1275
  • [24] Distributions on Riemannian manifolds, which are harmonic maps
    Choi, BY
    Yim, JW
    TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (02) : 175 - 188
  • [25] Computing harmonic maps between Riemannian manifolds
    Gaster, Jonah
    Loustau, Brice
    Monsaingeon, Leonard
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 531 - 580
  • [26] Levi Harmonic Maps of Contact Riemannian Manifolds
    Dragomir, Sorin
    Perrone, Domenico
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (03) : 1233 - 1275
  • [27] Riemannian foliations and quasifolds
    Lin, Yi
    Miyamoto, David
    MATHEMATISCHE ZEITSCHRIFT, 2024, 308 (03)
  • [28] On complex Riemannian foliations
    Ida, Cristian
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [29] DESINGULARIZATION OF RIEMANNIAN FOLIATIONS
    MOLINO, P
    AMERICAN JOURNAL OF MATHEMATICS, 1984, 106 (05) : 1091 - 1106
  • [30] Riemannian foliations of spheres
    Lytchak, Alexander
    Wilking, Burkhard
    GEOMETRY & TOPOLOGY, 2016, 20 (03) : 1257 - 1274