Enhancing environmental monitoring of harmful algal blooms with ConvLSTM image prediction

被引:0
|
作者
Kim, Sung Jae [1 ]
Cho, Yongbok [1 ]
机构
[1] Dong A Univ, Dept Management Informat Syst Coll Business Adm, Pusan 49236, South Korea
来源
关键词
harmful algal blooms; 3D universal kriging; spatiotemporal model; image prediction; deep learning; DIGITAL ELEVATION MODEL; CHLOROPHYLL; ACCURACY; HABS;
D O I
10.1088/2515-7620/adae5d
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study advances environmental monitoring by predicting the spatial and temporal distribution of Harmful Algal Blooms (HABs) in the Republic of Korea through a hybrid approach that combines geostatistical and deep learning methods. Using 3D universal kriging, the study interpolates missing HAB concentration values, transforming geospatial point data into spatially continuous grid images that serve as the foundation for predictive modeling. These interpolated images are then used as input for a ConvLSTM (Convolutional Long Short-Term Memory) network, which integrates convolutional layers to capture spatial patterns and LSTM units to model temporal dependencies. By leveraging this spatiotemporal modeling framework, the ConvLSTM network effectively predicts future HAB concentrations with improved accuracy. This innovative methodology highlights the utility of combining 3D universal kriging for spatial interpolation with image-based ConvLSTM prediction, offering valuable insights into HAB dynamics and supporting sustainable strategies for environmental management and public health.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] FINDING AND FORECASTING HARMFUL ALGAL BLOOMS
    Tomlinson, Michelle C.
    Stumpf, Richard P.
    Wynne, Timothy T.
    JOURNAL OF SHELLFISH RESEARCH, 2011, 30 (02): : 558 - 559
  • [32] HARMFUL ALGAL BLOOMS IN THE AUSTRALIAN REGION
    HALLEGRAEFF, GM
    MARINE POLLUTION BULLETIN, 1992, 25 (5-8) : 186 - 190
  • [33] The epidemiology of marine Harmful Algal Blooms
    Fleming, L
    Dewailly, E
    Baden, D
    EPIDEMIOLOGY, 2000, 11 (04) : S143 - S143
  • [34] Washington Watch: Harmful algal blooms
    Baker, B
    BIOSCIENCE, 1998, 48 (01) : 12 - 12
  • [35] Harmful algal blooms in inland waters
    Feng, Lian
    Wang, Ying
    Hou, Xuejiao
    Qin, Boqiang
    Kuster, Tiit
    Qu, Fan
    Chen, Nengwang
    Paerl, Hans W.
    Zheng, Chunmiao
    NATURE REVIEWS EARTH & ENVIRONMENT, 2024, 5 (09) : 631 - 644
  • [36] Harmful algal blooms and public health
    Grattan, Lynn M.
    Holobaugh, Sailor
    Morris, J. Glenn, Jr.
    HARMFUL ALGAE, 2016, 57 : 2 - 8
  • [37] Mitigation of harmful algal blooms by sophorolipid
    Baek, SH
    Sun, XX
    Lee, YJ
    Wang, SY
    Han, KN
    Choi, JK
    Noh, JH
    Kim, EK
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 13 (05) : 651 - 659
  • [38] Environmental and ecological drivers of harmful algal blooms revealed by automated underwater microscopy
    Kenitz, Kasia M. M.
    Anderson, Clarissa R. R.
    Carter, Melissa L. L.
    Eggleston, Emily
    Seech, Kristi
    Shipe, Rebecca
    Smith, Jayme
    Orenstein, Eric C. C.
    Franks, Peter J. S.
    Jaffe, Jules S. S.
    Barton, Andrew D. D.
    LIMNOLOGY AND OCEANOGRAPHY, 2023, 68 (03) : 598 - 615
  • [39] Harnessing Social Media for Environmental Sustainability: A Measurement Study on Harmful Algal Blooms
    Boddula, Vinay
    Joshi, Awani
    Ramaswamy, Lakshmish
    Mishra, Deepak
    2015 IEEE CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC), 2015, : 176 - 183
  • [40] Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms
    Stumpf, RP
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2001, 7 (05): : 1363 - U15