Analyzing the impact of socioeconomic indicators on gender inequality in Sri Lanka: A machine learning-based approach

被引:0
|
作者
Kularathne, Sherin [1 ]
Perera, Amanda [2 ]
Rathnayake, Namal [3 ]
Rathnayake, Upaka [4 ]
Hoshino, Yukinobu [5 ]
机构
[1] Sri Lanka Inst Informat Technol, Fac Grad Studies & Res, Malabe, Sri Lanka
[2] Univ Sri Jayewardenepura, Fac Management Studies & Commerce, Dept Business Econ, Gangodawila, Sri Lanka
[3] Univ Tokyo, Grad Sch Engn, River & Environm Engn Lab, Bunkyo City, Tokyo, Japan
[4] Atlantic Technol Univ, Fac Engn & Design, Dept Civil Engn & Construct, Sligo, Ireland
[5] Kochi Univ Technol, Sch Syst Engn, Kami, Kochi, Japan
来源
PLOS ONE | 2024年 / 19卷 / 12期
基金
日本学术振兴会;
关键词
ECONOMIC-GROWTH;
D O I
10.1371/journal.pone.0312395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study conducts a comprehensive analysis of gender inequality in Sri Lanka, focusing on the relationship between key socioeconomic factors and the Gender Inequality Index (GII) from 1990 to 2022. By applying machine learning techniques, including Decision Trees and Ensemble methods, the study investigates the influence of economic indicators such as GDP per capita, government expenditure, government revenue, and unemployment rates on gender disparities. The analysis reveals that higher GDP and government revenues are associated with reduced gender inequality, while greater unemployment rates exacerbate disparities. Explainable AI techniques (SHAP) further highlight the critical role of government policies and economic development in shaping gender equality. These findings offer specific insights for policymakers to design targeted interventions aimed at reducing gender gaps in Sri Lanka, particularly by prioritizing economic growth and inclusive public spending.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Machine learning-based new approach to films review
    Jassim, Mustafa Abdalrassual
    Abd, Dhafar Hamed
    Omri, Mohamed Nazih
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [22] A Machine learning-based approach to determining stress in rails
    Belding, Matthew
    Enshaeian, Alireza
    Rizzo, Piervincenzo
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 639 - 656
  • [23] Evaluating a Machine Learning-based Approach for Cache Configuration
    Ribeiro, Lucas
    Jacobi, Ricardo
    Junior, Francisco
    da Silva, Jones Yudi
    Silva, Ivan Saraiva
    2022 IEEE 13TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2022, : 180 - 183
  • [24] Predicting mergers & acquisitions: A machine learning-based approach
    Zhao, Yuchen
    Bi, Xiaogang
    Ma, Qing-Ping
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2025, 99
  • [25] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [26] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [27] A Machine Learning-Based Lexicon Approach for Sentiment Analysis
    Sahu, Tirath Prasad
    Khandekar, Sarang
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2020, 16 (02) : 8 - 22
  • [28] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [29] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):
  • [30] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13