Autoencoder and Extreme Learning Machine Based Deep Multi-label Classifier

被引:0
|
作者
Law, Anwesha [1 ]
Ray, Ratula [2 ]
Ghosh, Ashish [1 ]
机构
[1] Indian Stat Inst, Kolkata, India
[2] KIIT Univ, Sch Biotechnol, Bhubaneswar, India
关键词
Multi-label classification; Deep auto-encoders; Extreme learning machines;
D O I
10.1007/978-3-031-12700-7_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, a novel deep neural network model has been proposed for multi-label (ML) classification. Deep architectures, well-known for their information extraction and learning capabilities, have been specifically considered here to deal with the complex nature of ML data. The proposed model broadly has two phases: feature extraction and cascaded ML classification. In the first phase, deep autoencoders (DAEs) have been employed to handle the large feature space of ML data. The subsequent phase of the network takes these reduced and enhanced features and passes them through a cascade of ML extreme learning machines (MLELMs) which intricately learns the input to output mapping and performs ML classification. This proposed stacked network is capable of handling a large feature space while performing fast classification. Experiments have been done with benchmark ML datasets by varying the size of the network components to determine the optimal depth of the proposed model. Analysis of DAE vs stacked autoencoder (SAE) has also been done for best feature extraction. Comparison with six state-of-the-art classifiers also shows the proposed model to have superior performance in most cases.
引用
收藏
页码:160 / 170
页数:11
相关论文
共 50 条
  • [21] Ensemble of kernel extreme learning machine based elimination optimization for multi-label classification
    Zhang, Qingshuo
    Tsang, Eric C. C.
    He, Qiang
    Guo, Yanting
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [22] ELM-MC: multi-label classification framework based on extreme learning machine
    Haigang Zhang
    Jinfeng Yang
    Guimin Jia
    Shaocheng Han
    Xinran Zhou
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 2261 - 2274
  • [23] Multi-label Learning of Kernel Extreme Learning Machine with Non-Equilibrium Label Completion
    Cheng Y.-S.
    Zhao D.-W.
    Wang Y.-B.
    Pei G.-S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (03): : 719 - 725
  • [24] Extreme multi-label learning : A large scale classification approach in machine learning
    Prajapati, Purvi
    Thakkar, Amit
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (04): : 983 - 1001
  • [25] Dynamic Classifier Chains for Multi-label Learning
    Trajdos, Pawel
    Kurzynski, Marek
    PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 : 567 - 580
  • [26] Classifier circle method for multi-label learning
    Key Laboratory for Novel Software Technology, Nanjing University, Nanjing
    210023, China
    Ruan Jian Xue Bao, 11 (2811-2819):
  • [27] Deep Learning Method with Attention for Extreme Multi-label Text Classification
    Chen, Si
    Wang, Liangguo
    Li, Wan
    Zhang, Kun
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 179 - 190
  • [28] FastXML: A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning
    Prabhu, Yashoteja
    Varma, Manik
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 263 - 272
  • [29] Representation Learning With Dual Autoencoder for Multi-Label Classification
    Zhu, Yi
    Yang, Yang
    Li, Yun
    Qiang, Jipeng
    Yuan, Yunhao
    Zhang, Runmei
    IEEE ACCESS, 2021, 9 : 98939 - 98947
  • [30] Multi-Label Classification Method Based on Extreme Learning Machines
    Venkatesan, Rajasekar
    Er, Meng Joo
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 619 - 624