Autoencoder and Extreme Learning Machine Based Deep Multi-label Classifier

被引:0
|
作者
Law, Anwesha [1 ]
Ray, Ratula [2 ]
Ghosh, Ashish [1 ]
机构
[1] Indian Stat Inst, Kolkata, India
[2] KIIT Univ, Sch Biotechnol, Bhubaneswar, India
关键词
Multi-label classification; Deep auto-encoders; Extreme learning machines;
D O I
10.1007/978-3-031-12700-7_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, a novel deep neural network model has been proposed for multi-label (ML) classification. Deep architectures, well-known for their information extraction and learning capabilities, have been specifically considered here to deal with the complex nature of ML data. The proposed model broadly has two phases: feature extraction and cascaded ML classification. In the first phase, deep autoencoders (DAEs) have been employed to handle the large feature space of ML data. The subsequent phase of the network takes these reduced and enhanced features and passes them through a cascade of ML extreme learning machines (MLELMs) which intricately learns the input to output mapping and performs ML classification. This proposed stacked network is capable of handling a large feature space while performing fast classification. Experiments have been done with benchmark ML datasets by varying the size of the network components to determine the optimal depth of the proposed model. Analysis of DAE vs stacked autoencoder (SAE) has also been done for best feature extraction. Comparison with six state-of-the-art classifiers also shows the proposed model to have superior performance in most cases.
引用
收藏
页码:160 / 170
页数:11
相关论文
共 50 条
  • [1] Multi-label learning with kernel extreme learning machine autoencoder
    Cheng, Yusheng
    Zhao, Dawei
    Wang, Yibin
    Pei, Gensheng
    KNOWLEDGE-BASED SYSTEMS, 2019, 178 : 1 - 10
  • [2] FUZZT SET-BASED KERNEL EXTREME LEARNING MACHINE AUTOENCODER FOR MULTI-LABEL CLASSIFICATION
    Zhang, Qingshuo
    Tsang, Eric C. C.
    Hu, Meng
    He, Qiang
    Chen, Degang
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 182 - 187
  • [3] Multi-label Learning Based on Kernel Extreme Learning Machine
    Luo, Fangfang
    Guo, Wenzhong
    Huang, Fangwan
    Chen, Guolong
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE), 2017, 190 : 133 - 141
  • [4] Deep Extreme Multi-label Learning
    Zhang, Wenjie
    Yan, Junchi
    Wang, Xiangfeng
    Zha, Hongyuan
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 100 - 107
  • [5] Multi-label Extreme Learning Machine Based on Label Matrix Factorization
    Li Sihao
    Chen Fucai
    Huang Ruiyang
    Xie Yixi
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 665 - 670
  • [6] Extreme Learning Machine for Multi-Label Classification
    Sun, Xia
    Xu, Jingting
    Jiang, Changmeng
    Feng, Jun
    Chen, Su-Shing
    He, Feijuan
    ENTROPY, 2016, 18 (06)
  • [7] Multi-Label Classification with Extreme Learning Machine
    Kongsorot, Yanika
    Horata, Punyaphol
    2014 6TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2014, : 81 - 86
  • [8] Ranking-Based Autoencoder for Extreme Multi-label Classification
    Wang, Bingyu
    Chen, Li
    Sun, Wei
    Qin, Kechen
    Li, Kefeng
    Zhou, Hui
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 2820 - 2830
  • [9] A multi-label classification algorithm based on kernel extreme learning machine
    Luo, Fangfang
    Guo, Wenzhong
    Yu, Yuanlong
    Chen, Guolong
    NEUROCOMPUTING, 2017, 260 : 313 - 320
  • [10] Deep Learning for Extreme Multi-label Text Classification
    Liu, Jingzhou
    Chang, Wei-Cheng
    Wu, Yuexin
    Yang, Yiming
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 115 - 124