Ensemble Kalman Filtering (EnKF) is a popular technique for data assimilation, with far ranging applications. However, the vanilla EnKF framework is not well-defined when perturbations are nonlinear. We study two non-linear extensions of the vanilla EnKF-dubbed the conditional-Gaussian EnKF (CG-EnKF) and the normal score EnKF (NS-EnKF) - which sidestep assumptions of linearity by constructing the Kalman gain matrix with the 'conditional Gaussian' update formula in place of the traditional one. We then compare these models against a state-of-theart deep learning based particle filter called the score filter (SF). This model uses an expensive score diffusion model for estimating densities and also requires a strong assumption on the perturbation operator for validity. In our comparison, we find that CG-EnKF and NS-EnKF dramatically outperform SF for two canonical systems in data assimilation: the Lorenz-96 system and a double well potential system. Our analysis also demonstrates that the CG-EnKF and NSEnKF can handle highly non-Gaussian additive noise perturbations, with the latter typically outperforming the former.
机构:
Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USAUniv Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
Dibia, Emmanuel C.
Reichle, Rolf H.
论文数: 0引用数: 0
h-index: 0
机构:
NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USAUniv Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
Reichle, Rolf H.
Anderson, Jeffrey L.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, Boulder, CO USAUniv Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
Anderson, Jeffrey L.
Liang, Xin-Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USAUniv Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Penn State Univ, Ctr Adv Data Assimilat & Predictabil Tech, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Chan, Man-Yau
Anderson, Jeffrey L.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Atmospher Res, Data Assimilat Res Sect, Computat Informat Syst Lab, POB 3000, Boulder, CO 80307 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Anderson, Jeffrey L.
Chen, Xingchao
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Penn State Univ, Ctr Adv Data Assimilat & Predictabil Tech, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
机构:
Free Univ Berlin, Inst Meteorol, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, GermanyFree Univ Berlin, Inst Meteorol, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, Germany
Acevedo, Walter
Reich, Sebastian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Potsdam, Inst Math, Neuen Palais 10, D-14469 Potsdam, GermanyFree Univ Berlin, Inst Meteorol, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, Germany
Reich, Sebastian
Cubasch, Ulrich
论文数: 0引用数: 0
h-index: 0
机构:
Free Univ Berlin, Inst Meteorol, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, GermanyFree Univ Berlin, Inst Meteorol, Carl Heinrich Becker Weg 6-10, D-12165 Berlin, Germany