Quantum Kernelized Bandits

被引:0
|
作者
Hikima, Yasunari [1 ]
Murao, Kazunori [1 ]
Takemori, Sho [1 ]
Umeda, Yuhei [1 ]
机构
[1] Fujitsu Ltd, AI Lab, Kawasaki, Kanagawa, Japan
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the quantum kernelized bandit problem, where the player observes information of rewards through quantum circuits termed the quantum reward oracle, and the mean reward function belongs to a reproducing kernel Hilbert space (RKHS). We propose a UCB-type algorithm that utilizes the quantum Monte Carlo (QMC) method and provide regret bounds in terms of the decay rate of eigenvalues of the Mercer operator of the kernel. Our algorithm achieves (O) over tilde (T3/1+beta p) log(1/delta) and (O)over tilde>(log(3(1+beta e-1)/2) (T) log(1/delta) cumulative regret bounds with probability at least 1 - delta if the kernel has a beta(p)-polynomial eigendecay and beta(e)-exponential eigendecay, respectively. In particular, in the case of the exponential eigendecay, our regret bounds exponentially improve that of classical algorithms. Moreover, our results indicate that our regret bound is better than the lower bound in the classical kernelized bandit problem if the rate of decay is sufficiently fast.
引用
收藏
页码:1640 / 1657
页数:18
相关论文
共 50 条
  • [41] Kernelized Diffusion Maps
    Pillaud-Vivien, Loucas
    Bach, Francis
    THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [42] Kernelized movement primitives
    Huang, Yanlong
    Rozo, Leonel
    Silverio, Joao
    Caldwell, Darwin G.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2019, 38 (07): : 833 - 852
  • [43] Parallel hybrid quantum-classical machine learning for kernelized time-series classification
    Baker, Jack S.
    Park, Gilchan
    Yu, Kwangmin
    Ghukasyan, Ara
    Goktas, Oktay
    Radha, Santosh Kumar
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [44] Kernelized Linear Autoencoder
    Angshul Majumdar
    Neural Processing Letters, 2021, 53 : 1597 - 1614
  • [45] Corsican bandits. Bandits of honour in the great banditry
    Morvant, Patrick
    HISTORIA, 2006, (718): : 88 - 88
  • [46] Kernelized Support Tensor Machines
    He, Lifang
    Lu, Chun-Ta
    Ma, Guixiang
    Wang, Shen
    Shen, Linlin
    Yu, Philip S.
    Ragin, Ann B.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [47] Factored Bandits
    Zimmert, Julian
    Seldin, Yevgeny
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [48] Blocking Bandits
    Basu, Soumya
    Sen, Rajat
    Sanghavi, Sujay
    Shakkottai, Sanjay
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [49] Five Bandits
    Chi-Ha, Kim
    MANOA-A PACIFIC JOURNAL OF INTERNATIONAL WRITING, 2015, 27 (02): : 94 - 104
  • [50] Recharging Bandits
    Immorlica, Nicole
    Kleinberg, Robert
    2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 309 - 319