Utilization of Stable and Efficient High-Entropy (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4 Catalyst with Polyvalent Transition Metals to Boost Peroxymonosulfate Activation toward Pollutant Degradation

被引:0
|
作者
Yu, Xinmiao [1 ]
Wang, Shifa [1 ]
Zhang, Yuanyuan [1 ]
Yu, Xianlun [1 ]
Gao, Huajing [2 ]
Yang, Hua [3 ]
Fang, Leiming [4 ]
Zhang, Huijun [5 ]
Syed, Asad [6 ]
机构
[1] Chongqing Three Gorges Univ, Sch Elect & Informat Engn, Chongqing 404000, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[3] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Peoples R China
[4] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Sichuan, Peoples R China
[5] Xi An Jiao Tong Univ, Shaanxi Int Res Ctr Soft Matter, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[6] King Saud Univ, Coll Sci, Dept Bot & Microbiol, POB 2455, Riyadh 11451, Saudi Arabia
基金
中国国家自然科学基金;
关键词
(Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4; catalytic mechanism; DFT; high entropy oxide; PMS; OXIDATION;
D O I
10.1002/smll.202410819
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (Ni0.2Zn0.2Mg0.2Cu0.2Co0.2)Al2O4-800 degrees C (A(2)) on the basis of NiAl2O4, and the catalytic activity of A(2) is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A(2) containing polyvalent transition metals (Ni2+, Cu2+, and Co2+) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L-1) and TCH (100 mg L-1) degrade by the A(2)/PMS/vis system reach 87.0% and 90.2%, respectively. The superoxide radicals, photoinduced holes, and singlet oxides dominate the catalytic process, while hydroxyl radicals and sulfate radicals play only a small role. The adsorption energy and charge density difference between different systems and PMS are calculated by density functional theory, and the activation efficiency of PMS is studied by combining with the change of the length of the O-O bond of the PMS after adsorption. The catalytic mechanism of A(2)/PMS/vis system is proposed, which provides a new idea and method for the study of high entropy oxides in the field of catalysis.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] High-entropy oxide Mg0.2Co0.2Fe0.2Ni0.2Zn0.2O: synthesis, X-ray diffraction and Mossbauer studies
    Musin, V. F.
    Zinnatullin, A. L.
    Vagizov, F. G.
    MAGNETIC RESONANCE IN SOLIDS, 2024, 26 (03)
  • [22] Effect of constituent cations on the electrocatalytic oxygen evolution reaction in high-entropy oxide (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)O
    Kim, Kyung-Hwan
    Choi, Yun-Hyuk
    Journal of Electroanalytical Chemistry, 2022, 922
  • [23] Effect of constituent cations on the electrocatalytic oxygen evolution reaction in high-entropy oxide (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)O
    Kim, Kyung-Hwan
    Choi, Yun-Hyuk
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 922
  • [24] Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder
    Mao, Aiqin
    Xiang, Hou-Zheng
    Zhang, Zhan-Guo
    Kuramoto, Koji
    Yu, Haiyun
    Ran, Songlin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 484 : 245 - 252
  • [25] Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4- A novel high-entropy ceramic
    Liu, Kui
    Zhang, Huaiwu
    Liu, Cheng
    Li, Jie
    Shi, Liang
    Wang, Xueying
    Zhang, Dainan
    CERAMICS INTERNATIONAL, 2022, 48 (16) : 23307 - 23313
  • [26] High-entropy oxide (Fe0.2Zn0.2Co0.2Ni0.2Cu0.2)Fe2O4: An efficient and stable spinel-type electrocatalyst for H2O2 production in alkaline media
    Danyang, Li
    Liping, Sun
    Qiang, Li
    Tian, Xia
    Lihua, Huo
    Hui, Zhao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 913
  • [27] Multi-Method Characterization of the High-Entropy Spinel Oxide Mn0.2Co0.2Ni0.2Cu0.2Zn0.2Fe2O4: Entropy Evidence, Microstructure, and Magnetic Properties
    Senkale, Svenja
    Kamp, Marius
    Mangold, Stefan
    Indris, Sylvio
    Kienle, Lorenz
    Kremer, Reinhard K.
    Bensch, Wolfgang
    CHEMISTRY-METHODS, 2023, 3 (02):
  • [28] Pressure-induced suppression of Jahn-Teller distortions and enhanced electronic properties in high-entropy oxide (Mg0.2Ni0.2Co0.2Zn0.2Cu0.2)O
    Yan, Jiejuan
    Zhang, Lingkong
    Liu, Junxiu
    Li, Nana
    Tamura, Nobumichi
    Chen, Bin
    Lin, Yu
    Mao, Wendy L.
    Zhang, Hengzhong
    APPLIED PHYSICS LETTERS, 2021, 119 (15)
  • [29] Electrical properties of high-entropy oxides (La0.2Ba0.2Cu0.2Sn0.2Ni0.2)3O4
    Chen, Zheng
    Hou, Junxin
    Jin, Xiangwei
    Zheng, Lingxia
    Liu, Fenghua
    Li, Zhixiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2025, 36 (05)
  • [30] High-entropy oxide (Mg 0.2 Fe 0.2 Co 0.2 Cu 0.2 Zn 0.2 )O with rocksalt-to-spinel transformation and its electrocatalytic activity for the oxygen evolution reaction
    Hong, Daehyeon
    Choi, Yun-Hyuk
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 985