Recovery of intercalated Li and synthesis of reduced graphene oxide from graphite of spent Li-ion battery for supercapacitor application

被引:0
|
作者
Uppin, Bhagyashree [1 ]
Sankannavar, Rohini [1 ]
Kangutkar, Raju S. [1 ]
Manjanna, Jayappa [1 ]
Kolekar, Sanjay [2 ]
Nayaka, Girish P. [3 ]
机构
[1] Rani Channamma Univ, Dept Chem, Belagavi 591156, Karnataka, India
[2] Shivaji Univ, Dept Chem, Kolhapur 416004, Maharashtra, India
[3] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, India
关键词
Spent Li-ion battery; Graphite anode; Lithium recovery; Recovered graphite; rGO synthesis; Supercapacitor; HIGH-PERFORMANCE SUPERCAPACITOR; GREEN SYNTHESIS; SOLUBLE GRAPHENE; FACILE SYNTHESIS; LITHIUM; ELECTRODE; REDUCTION; COMPOSITE; HYBRID; CAPACITY;
D O I
10.1016/j.inoche.2025.114371
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Spent Li-ion batteries (LIBs) are accumulating rapidly across the world. Anode portion of spent LIBs is comprised of graphite with a significant amount of intercalated Li. Thus, it serves as an important secondary resource of Li. Therefore, this study is focused on the eco-friendly recovery of Li from anode graphite and the conversion of recovered graphite (RG) into reduced graphene oxide (rGO) for its application in supercapacitors. The spent graphite (SG) was dissolved in 0.5 M oxalic acid with a solid-liquid ratio of 50 g L- 1 at 70 degrees C for about 90 min. Under given condition, 100 % Li was extracted from graphite. The dissolved Li was successfully recovered as Li2CO3. Further, RG was used as a precursor for the synthesis of GO and then converted to rGO by reduction with gallic acid under microwave irradiation. As synthesized rGO was used as an electrode material for supercapacitor application. The rGO electrode exhibited highest specific capacitance of 1211 F g- 1 at a current density of 4 mA cm- 2. It showed energy density 168.2 W h kg- 1 and power density 1000 W kg- 1 with stability up to 2000 cycles (90 % retention). Further, asymmetric solid-state device (rGO//activated carbon) was fabricated with polyvinyl alcohol - H2SO4 as electrolyte. It exhibited high energy density of 94 W h kg- 1 at a power density of 1200 W kg- 1 and cycling stability up to 1500 cycles with 86.20 % capacity retention. Hence, rGO synthesized from spent LIB provides an excellent electrode material for construction of supercapacitor devices.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode
    Agostini, Marco
    Brutti, Sergio
    Hassoun, Jusef
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (17) : 10850 - 10857
  • [32] Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications
    Cericola, D.
    Ruch, P. W.
    Koetz, R.
    Novak, P.
    Wokaun, A.
    JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2731 - 2736
  • [33] Recycling Strategies for Spent Li-Ion Battery Mixed Cathodes
    Natarajan, Subramanian
    Aravindan, Vanchiappan
    ACS ENERGY LETTERS, 2018, 3 (09): : 2101 - 2103
  • [34] Li-ion battery technology for grid application
    Choi, Daiwon
    Shamim, Nimat
    Crawford, Alasdair
    Huang, Qian
    Vartanian, Charlie K.
    Viswanathan, Vilayanur V.
    Paiss, Matthew D.
    Alam, Md Jan E.
    Reed, David M.
    Sprenkle, Vince L.
    JOURNAL OF POWER SOURCES, 2021, 511
  • [35] Reduction of graphene oxide in Li-ion batteries
    Zhao, Chunsong
    Gao, Hongpeng
    Chen, Chengmeng
    Wu, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) : 18360 - 18364
  • [36] Regeneration of Polyolefin Separators from Spent Li-Ion Battery for Second Life
    Natarajan, Subramanian
    Subramanyan, Krishnan
    Dhanalakshmi, R. Baby
    Stephan, A. Manuel
    Aravindan, Vanchiappan
    BATTERIES & SUPERCAPS, 2020, 3 (07) : 581 - 586
  • [37] Graphite recovery from waste Li-ion battery black mass for direct re-use
    Chernyaev, Alexander
    Kobets, Anna
    Liivand, Kerli
    Tesfaye, Fiseha
    Hannula, Pyry-Mikko
    Kallio, Tanja
    Hupa, Leena
    Lundstrom, Mari
    MINERALS ENGINEERING, 2024, 208
  • [38] A Reduced Li-Ion Battery Charger for Portable Applications
    Tsai, Chia-Chun
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1718 - 1722
  • [39] Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes
    Liu, Jinyun
    Zheng, Qiye
    Goodman, Matthew D.
    Zhu, Haoyue
    Kim, Jinwoo
    Krueger, Neil A.
    Ning, Hailong
    Huang, Xingjiu
    Liu, Jinhuai
    Terrones, Mauricio
    Braun, Paul V.
    ADVANCED MATERIALS, 2016, 28 (35) : 7696 - +
  • [40] Li-ion diffusion in Li intercalated graphite C6Li and C12Li probed by μ+SR
    Umegaki, Izumi
    Kawauchi, Shigehiro
    Sawada, Hiroshi
    Nozaki, Hiroshi
    Higuchi, Yuki
    Miwa, Kazutoshi
    Kondo, Yasuhito
    Mansson, Martin
    Telling, Mark
    Coomer, Fiona C.
    Cottrell, Stephen P.
    Sasaki, Tsuyoshi
    Kobayashi, Tetsuro
    Sugiyama, Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (29) : 19058 - 19066