Maize Kernel Broken Rate Prediction Using Machine Vision and Machine Learning Algorithms

被引:0
|
作者
Fan, Chenlong [1 ]
Wang, Wenjing [1 ]
Cui, Tao [2 ]
Liu, Ying [1 ]
Qiao, Mengmeng [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Peoples R China
[2] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
combine harvester; image processing; maize kernels; broken rate; detection; COMPUTER VISION; RANDOM FOREST; CLASSIFICATION; REGRESSION; QUALITY; VOLUME;
D O I
10.3390/foods13244044
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Rapid online detection of broken rate can effectively guide maize harvest with minimal damage to prevent kernel fungal damage. The broken rate prediction model based on machine vision and machine learning algorithms is proposed in this manuscript. A new dataset of high moisture content maize kernel phenotypic features was constructed by extracting seven features (geometric and shape features). Then, the regression model of the kernel (broken and unbroken) weight prediction and the classification model of kernel defect detection were established using the mainstream machine learning algorithm. In this way, the defect rapid identification and accurate weight prediction of broken kernels achieve the purpose of broken rate quantitative detection. The results prove that LGBM (light gradient boosting machine) and RF (random forest) algorithms were suitable for constructing weight prediction models of broken and unbroken kernels, respectively. The r values of the models built by the two algorithms were 0.985 and 0.910, respectively. SVM (support vector machine) algorithms perform well in constructing maize kernel classification models, with more than 95% classification accuracy. A strong linear relationship was observed between the predicted and actual broken rates. Therefore, this method could help to be an accurate, objective, efficient broken rate online detection method for maize harvest.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Heart Disease Prediction by Using Machine Learning Algorithms
    Erdogan, Alperen
    Guney, Selda
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [32] Machine Learning for Prediction of Energy Consumption and Broken Force in the Chopping Process of Maize Straw
    Liu, Peng
    Lou, Shangyi
    Shen, Huipeng
    Wang, Mingxu
    AGRONOMY-BASEL, 2023, 13 (12):
  • [33] Comparison of machine learning algorithms for slope stability prediction using an automated machine learning approach
    Kurnaz, Talas Fikret
    Erden, Caner
    Dagdeviren, Ugur
    Demir, Alparslan Serhat
    Kokcam, Abdullah Hulusi
    NATURAL HAZARDS, 2024, 120 (08) : 6991 - 7014
  • [34] Prediction of Arrhythmia with Machine Learning Algorithms
    Gursoy, Gunes
    Varol, Asaf
    9TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS'21), 2021,
  • [35] Prediction of progression rate and fate of osteoarthritis: Comparison of machine learning algorithms
    Yoo, Hyun Jin
    Jeong, Ho Won
    Kim, Sung Woon
    Kim, Myeongju
    Lee, Jae Ik
    Lee, Yong Seuk
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2023, 41 (03) : 583 - 590
  • [36] Comparison between machine learning algorithms for TBM advance rate prediction
    Huang, Shengfeng
    Dastpak, Pooya
    Esmaeilpour, Misagh
    Liu, Kaijian
    Sousa, Rita L.
    PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 2710 - 2716
  • [37] Prediction of tunnel boring machine operating parameters using various machine learning algorithms
    Xu, Chen
    Liu, Xiaoli
    Wang, Enzhi
    Wang, Sijing
    Tunnelling and Underground Space Technology, 2021, 109
  • [38] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [39] Prediction of tunnel boring machine operating parameters using various machine learning algorithms
    Xu, Chen
    Liu, Xiaoli
    Wang, Enzhi
    Wang, Sijing
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2021, 109
  • [40] Application of machine learning algorithms for prediction of sinter machine productivity
    Mallick, Arpit
    Dhara, Subhra
    Rath, Sushant
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6