ABDOMEN PELVIS - Deep learning reconstruction of CT colonography images

被引:0
|
作者
Graewert, Stephanie
机构
关键词
D O I
10.1055/a-2415-9085
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
CT colonography (CTK) is usually used when a colonoscopy cannot be performed or cannot be performed completely. One disadvantage, however, is the radiation exposure. In China, research has now been carried out to determine whether good images can be generated using deep learning-based reconstruction (DLR) even at low radiation doses. The study cohort consisted of 270 subjects who voluntarily underwent CTK.
引用
收藏
页码:18 / 18
页数:1
相关论文
共 50 条
  • [41] General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis
    Amjad, Asma
    Xu, Jiaofeng
    Thill, Dan
    Lawton, Colleen
    Hall, William
    Awan, Musaddiq J.
    Shukla, Monica
    Erickson, Beth A.
    Li, X. Allen
    MEDICAL PHYSICS, 2022, 49 (03) : 1686 - 1700
  • [42] Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps
    Wesp, Philipp
    Grosu, Sergio
    Graser, Anno
    Maurus, Stefan
    Schulz, Christian
    Knosel, Thomas
    Fabritius, Matthias P.
    Schachtner, Balthasar
    Yeh, Benjamin M.
    Cyran, Clemens C.
    Ricke, Jens
    Kazmierczak, Philipp M.
    Ingrisch, Michael
    EUROPEAN RADIOLOGY, 2022, 32 (07) : 4749 - 4759
  • [43] Deep ensemble learning of virtual endoluminal views for polyp detection in CT colonography
    Umehara, Kensuke
    Nappi, Janne J.
    Hironaka, Toru
    Regge, Daniele
    Ishida, Takayuki
    Yoshida, Hiroyuki
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [44] Deep learning in CT colonography: differentiating premalignant from benign colorectal polyps
    Philipp Wesp
    Sergio Grosu
    Anno Graser
    Stefan Maurus
    Christian Schulz
    Thomas Knösel
    Matthias P. Fabritius
    Balthasar Schachtner
    Benjamin M. Yeh
    Clemens C. Cyran
    Jens Ricke
    Philipp M. Kazmierczak
    Michael Ingrisch
    European Radiology, 2022, 32 : 4749 - 4759
  • [45] Deep transfer learning of virtual endoluminal views for the detection of polyps in CT colonography
    Naeppi, Janne J.
    Hironaka, Toru
    Regge, Daniele
    Yoshida, Hiroyuki
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [46] Accurate and Automatic 3D Segmentation of Femur and Pelvis from CT Images of the Hip based on Deep Learning
    Liang, Kaiyi
    Fu, Hongchao
    Zhou, Hui
    Jiang, Lingxia
    Yin, Xiaohua
    Zhang, Ming
    Peng, Xin
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2021, 65 (03)
  • [47] CT colonography using different reconstruction modi
    Röttgen, R
    Fischbach, F
    Plotkin, M
    Lorenz, M
    Freund, T
    Schröder, RJ
    Felix, RR
    CLINICAL IMAGING, 2005, 29 (03) : 195 - 199
  • [48] Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen
    Thor, Daniel
    Titternes, Rebecca
    Poludniowski, Gavin
    MEDICAL PHYSICS, 2023, 50 (05) : 2775 - 2786
  • [49] Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
    Mineka Sato
    Yasutaka Ichikawa
    Kensuke Domae
    Kazuya Yoshikawa
    Yoshinori Kanii
    Akio Yamazaki
    Naoki Nagasawa
    Motonori Nagata
    Masaki Ishida
    Hajime Sakuma
    European Radiology, 2022, 32 : 5499 - 5507
  • [50] Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
    Sato, Mineka
    Ichikawa, Yasutaka
    Domae, Kensuke
    Yoshikawa, Kazuya
    Kanii, Yoshinori
    Yamazaki, Akio
    Nagasawa, Naoki
    Nagata, Motonori
    Ishida, Masaki
    Sakuma, Hajime
    EUROPEAN RADIOLOGY, 2022, 32 (08) : 5499 - 5507