A survey of large language models for healthcare: from data, technology, and applications to accountability and ethics

被引:0
|
作者
He, Kai [1 ]
Mao, Rui [2 ]
Lin, Qika [1 ]
Ruan, Yucheng [1 ]
Lan, Xiang [1 ]
Feng, Mengling [1 ]
Cambria, Erik [2 ]
机构
[1] Natl Univ Singapore, Singapore 119077, Singapore
[2] Nanyang Technol Univ, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Healthcare application; Large language model; Medicine; Pretrained language model; ARTIFICIAL-INTELLIGENCE; TRANSFORMERS; RESOURCE;
D O I
10.1016/j.inffus.2025.102963
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The utilization of large language models (LLMs) for Healthcare has generated both excitement and concern due to their ability to effectively respond to free-text queries with certain professional knowledge. This survey outlines the capabilities of the currently developed Healthcare LLMs and explicates their development process, to provide an overview of the development road map from traditional Pretrained Language Models (PLMs) to LLMs. Specifically, we first explore the potential of LLMs to enhance the efficiency and effectiveness of various Healthcare applications highlighting both the strengths and limitations. Secondly, we conduct a comparison between the previous PLMs and the latest LLMs, and summarize related Healthcare training data, learning methods, and usage. Finally, the unique concerns associated with deploying LLMs are investigated, particularly regarding fairness, accountability, transparency, and ethics. Besides, we support researchers by compiling a collection of open-source resources1. Summarily, we contend that a significant paradigm shift is underway, transitioning from PLMs to LLMs. This shift encompasses a move from discriminative AI approaches to generative AI approaches, as well as a move from model-centered methodologies to datacentered methodologies. We determine that the biggest obstacle of using LLMs in Healthcare are fairness, accountability, transparency and ethics.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Transformers and large language models in healthcare: A review
    Nerella, Subhash
    Bandyopadhyay, Sabyasachi
    Zhang, Jiaqing
    Contreras, Miguel
    Siegel, Scott
    Bumin, Aysegul
    Silva, Brandon
    Sena, Jessica
    Shickel, Benjamin
    Bihorac, Azra
    Khezeli, Kia
    Rashidi, Parisa
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [22] Can Large Language Models Help Healthcare?
    Miyamoto, Yoshihiro
    JOURNAL OF ATHEROSCLEROSIS AND THROMBOSIS, 2024,
  • [23] A Review of Applying Large Language Models in Healthcare
    Liu, Qiming
    Yang, Ruirong
    Gao, Qin
    Liang, Tengxiao
    Wang, Xiuyuan
    Li, Shiju
    Lei, Bingyin
    Gao, Kaiye
    IEEE ACCESS, 2025, 13 : 6878 - 6892
  • [24] HTA CONSIDERATIONS FOR LARGE LANGUAGE MODELS IN HEALTHCARE
    Leonard, C.
    Unsworth, H.
    Warttig, S.
    Gildea, L.
    Mordin, M.
    Ling, C.
    VALUE IN HEALTH, 2024, 27 (12) : S354 - S354
  • [25] Research and Application of Large Language Models in Healthcare
    Zhou, Chunfang
    Gong, Qingyue
    Zhu, Jinyang
    Luan, Huidan
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 664 - 670
  • [26] Large language models for biomolecular analysis: From methods to applications
    Feng, Ruijun
    Zhang, Chi
    Zhang, Yang
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 171
  • [27] Industrial applications of large language models
    Mubashar Raza
    Zarmina Jahangir
    Muhammad Bilal Riaz
    Muhammad Jasim Saeed
    Muhammad Awais Sattar
    Scientific Reports, 15 (1)
  • [28] Large language models for oncological applications
    Vera Sorin
    Yiftach Barash
    Eli Konen
    Eyal Klang
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 9505 - 9508
  • [29] Large language models for oncological applications
    Sorin, Vera
    Barash, Yiftach
    Konen, Eli
    Klang, Eyal
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (11) : 9505 - 9508
  • [30] Applications of Large Language Models in Pathology
    Cheng, Jerome
    BIOENGINEERING-BASEL, 2024, 11 (04):