Internal Sensing with Exposed Core Fiber Plasmonic Sensor and Machine-Learning Approach for RI Prediction

被引:1
|
作者
Ali, Yahya Ali Abdelrahman [1 ]
Rahman, Afiquer [2 ]
Almawgani, Abdulkarem H. M. [3 ]
Mollah, Md. Aslam [2 ]
Alabsi, Basim Ahmad [4 ]
机构
[1] Najran Univ, Coll Comp Sci & Informat Syst, Informat Syst Dept, Najran 66462, Saudi Arabia
[2] Rajshahi Univ Engn & Technol, Dept Elect & Telecommun Engn, Rajshahi 6204, Bangladesh
[3] Najran Univ, Coll Engn, Elect Engn Dept, Najran 66462, Saudi Arabia
[4] Najran Univ, Appl Coll, Dept Comp Sci, Najran 66462, Saudi Arabia
关键词
Surface plasmon resonance; Photonic crystal fiber; Machine-learning; Support vector regression; ERROR;
D O I
10.1007/s11468-024-02754-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study introduces, simulates, and evaluates an exposed core photonic crystal fiber (ECPCF)-based refractive index (RI) sensor where the surface plasmon resonance (SPR) phenomenon is incorporated through the noble metal gold. The sensor delivers exceptional performance, achieving a maximum wavelength sensitivity (WS) of 23,000 nm/RIU and a figure of merit (FOM) of 287.50 RIU-1. It covers an RI range of 1.33 to 1.41, making it suitable for identifying a wide variety of substances, including cancer cells, and biochemicals, demonstrating its versatility for optical sensing applications. Additionally, the incorporation of support vector regression (SVR) technique enhances accuracy and minimizes losses for RI prediction, offering promising advancements for applications such as lab-on-chip technologies. The findings highlight the sensor's potential to revolutionize optical sensing with its remarkable sensitivity and extensive detection range.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach
    Arab, Sara Tokhi
    Noguchi, Ryozo
    Matsushita, Shusuke
    Ahamed, Tofael
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 22
  • [42] Plasmonic nanoparticle-functionalized exposed-core fiber-an optofluidic refractive index sensing platform
    Doherty, Brenda
    Thiele, Matthias
    Warren-Smith, Stephen
    Schartner, Erik
    Ebendorff-Heidepriem, Heike
    Fritzsche, Wolfgang
    Schmidt, Markus A.
    OPTICS LETTERS, 2017, 42 (21) : 4395 - 4398
  • [43] An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing
    Paul, Alok Kumar
    Habib, Md Samiul
    Nguyen Hoang Hai
    Razzak, S. M. Abdur
    OPTICS COMMUNICATIONS, 2020, 464
  • [44] An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data
    Wu, Chao
    Wang, Zhen
    Hu, Simon
    Lepine, Julien
    Na, Xiaoxiang
    Ainalis, Daniel
    Stettler, Marc
    SENSORS, 2020, 20 (19) : 1 - 23
  • [45] Prediction of the daily nutrient requirements of gestating sows based on sensor data and machine-learning algorithms
    Durand, Maeva
    Largouet, Christine
    de Beaufort, Louis Bonneau
    Dourmad, Jean Yves
    Gaillard, Charlotte
    JOURNAL OF ANIMAL SCIENCE, 2023, 101
  • [46] Risk Prediction Models for Graft Failure after Liver Transplantation: A Machine-Learning Approach
    Kwong, Allison J.
    O'Connell, Chloe
    Kanzawa, Mia
    Hufker, Katherine
    Lindsay, Neil
    Kim, W. Ray
    HEPATOLOGY, 2018, 68 : 668A - 669A
  • [47] LSO-080 Machine-learning approach on lupus low disease activity prediction
    Faelnar, Nick
    Tee, Michael
    Tee, Cherica
    Caro, Jaime
    Solano, Geoffrey
    Kandane-Rathnayake, Rangi
    Magbitang-Santiago, Angelene Therese
    Salido, Evelyn
    Golder, Vera
    Louthrenoo, Worawit
    Chen, Yi-Hsing
    Cho, Jiacai
    Lateef, Aisha
    Hamijoyo, Laniyati
    Luo, Shue-Fen
    Wu, Yeong-Jian J.
    Navarra, Sandra
    Zamora, Leonid
    Li, Zhanguo
    Sockalingam, Sargunan
    Katsumata, Yasuhiro
    Harigai, Masayoshi
    Hao, Yanjie
    Zhang, Zhuoli
    Basnayake, B. M. D. B.
    Chann, Madelynn
    Kikuchi, Jun
    Takeuchi, Tsutomu
    Bae, Sang-Cheol
    Oon, Shereen
    O'Neill, Sean
    Goldblatt, Fiona
    Ng, Kristine
    Law, Annie
    Tugnet, Nicola
    Kumar, Sunil
    Ohkubo, Naoaki
    Tanaka, Yoshiya
    Lau, Chak Sing
    Nikpour, Mandana
    Hoi, Alberta
    Morand, Eric
    LUPUS SCIENCE & MEDICINE, 2023, 10 (SUPPL_1): : A84 - A84
  • [48] Crime analysis and prediction using machine-learning approach in the case of Hossana Police Commission
    Wubineh, Betelhem Zewdu
    SECURITY JOURNAL, 2024, 37 (04) : 1269 - 1284
  • [49] Prediction of future cognitive impairment among the community elderly: a machine-learning based approach
    Na, K. S.
    EUROPEAN PSYCHIATRY, 2019, 56 : S431 - S431
  • [50] Machine-learning approach for prediction and analysis of quantitative and qualitative parameters of binary polar liquids
    Haridas Prasanna, Thushara
    Shanta, Mridula
    BULLETIN OF MATERIALS SCIENCE, 2024, 47 (01)