Internal Sensing with Exposed Core Fiber Plasmonic Sensor and Machine-Learning Approach for RI Prediction

被引:1
|
作者
Ali, Yahya Ali Abdelrahman [1 ]
Rahman, Afiquer [2 ]
Almawgani, Abdulkarem H. M. [3 ]
Mollah, Md. Aslam [2 ]
Alabsi, Basim Ahmad [4 ]
机构
[1] Najran Univ, Coll Comp Sci & Informat Syst, Informat Syst Dept, Najran 66462, Saudi Arabia
[2] Rajshahi Univ Engn & Technol, Dept Elect & Telecommun Engn, Rajshahi 6204, Bangladesh
[3] Najran Univ, Coll Engn, Elect Engn Dept, Najran 66462, Saudi Arabia
[4] Najran Univ, Appl Coll, Dept Comp Sci, Najran 66462, Saudi Arabia
关键词
Surface plasmon resonance; Photonic crystal fiber; Machine-learning; Support vector regression; ERROR;
D O I
10.1007/s11468-024-02754-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study introduces, simulates, and evaluates an exposed core photonic crystal fiber (ECPCF)-based refractive index (RI) sensor where the surface plasmon resonance (SPR) phenomenon is incorporated through the noble metal gold. The sensor delivers exceptional performance, achieving a maximum wavelength sensitivity (WS) of 23,000 nm/RIU and a figure of merit (FOM) of 287.50 RIU-1. It covers an RI range of 1.33 to 1.41, making it suitable for identifying a wide variety of substances, including cancer cells, and biochemicals, demonstrating its versatility for optical sensing applications. Additionally, the incorporation of support vector regression (SVR) technique enhances accuracy and minimizes losses for RI prediction, offering promising advancements for applications such as lab-on-chip technologies. The findings highlight the sensor's potential to revolutionize optical sensing with its remarkable sensitivity and extensive detection range.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning for sensing with a multimode exposed core fiber specklegram sensor
    Smith, Darcy L.
    Nguyen, Linh, V
    Ottaway, David J.
    Cabral, Thiago D.
    Fujiwara, Eric
    Cordeiro, Cristiano M. B.
    Warren-Smith, Stephen C.
    OPTICS EXPRESS, 2022, 30 (07) : 10443 - 10455
  • [2] Convex Analyte Channel Photonic Crystal Fiber Plasmonic Sensor and RI Prediction Incorporating Machine Learning Approach
    Alabsi, Basim Ahmad
    Mollah, Md. Aslam
    Almawgani, Abdulkarem H. M.
    Rahman, Afiquer
    Ali, Yahya Ali Abdelrahman
    PLASMONICS, 2025,
  • [3] A Machine-Learning Approach for the Prediction of Internal Corrosion in Pipeline Infrastructures
    Canonaco, Giuseppe
    Roveri, Manuel
    Alippi, Cesare
    Podenzani, Fabrizio
    Bennardo, Antonio
    Conti, Marco
    Mancini, Nicola
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [4] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    CHEMPHYSCHEM, 2023, 24 (14)
  • [5] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301
  • [6] Choosing the Best Sensor Fusion Method: A Machine-Learning Approach
    Brena, Ramon F.
    Aguileta, Antonio A.
    Trejo, Luis A.
    Molino-Minero-Re, Erik
    Mayora, Oscar
    SENSORS, 2020, 20 (08)
  • [7] Enhancing the Performance of Photonic Sensor Using Machine-Learning Approach
    Dwivedi, Yogendra Swaroop
    Singh, Rishav
    Sharma, Anuj K.
    Sharma, Ajay Kumar
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2320 - 2327
  • [8] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [9] Analysis and prediction of Indian stock market: a machine-learning approach
    Srivastava, Shilpa
    Pant, Millie
    Gupta, Varuna
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (04) : 1567 - 1585
  • [10] A machine-learning approach to cardiovascular risk prediction in psoriatic arthritis
    Navarini, Luca
    Sperti, Michela
    Currado, Damiano
    Costa, Luisa
    Deriu, Marco A.
    Margiotta, Domenico Paolo Emanuele
    Tasso, Marco
    Scarpa, Raffaele
    Afeltra, Antonella
    Caso, Francesco
    RHEUMATOLOGY, 2020, 59 (07) : 1767 - 1769