Simulation of Quantum Diffusion on a One-Dimensional Periodic Potential

被引:0
|
作者
Guan, Weizhong [1 ,2 ]
Liu, Yanying [1 ,2 ]
Shi, Qiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, State Key Lab Struct Chem Unstable & Stable Specie, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2025年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
SURFACE-DIFFUSION; METAL-SURFACES; ADSORBATES; MIGRATION; HYDROGEN; SYSTEM; BATH; HOPS;
D O I
10.1021/acs.jpcc.4c06714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen atom diffusion on surfaces is known to be significantly affected by nuclear quantum effects. In this work, we explore the quantum dynamics of hydrogen atom diffusion in a one-dimensional periodic potential model, coupled to a harmonic bath, by using the hierarchical equations of motion (HEOM) approach. The diffusive behavior of an initial Gaussian wavepacket is first characterized by calculating the mean square displacement. We then employ the transfer tensor method to extract from the HEOM result the kernel of a generalized master equation, which describes the coarse-grained evolution of populations across the potential wells. The rate constants from the integral of memory kernels agree with those from direct nonlinear fitting of the population dynamics based on a Markovian master equation, indicating that the long time diffusive behavior can be described by hopping between different potential wells. The results show that, long-range transitions, although having rate constants much smaller than nearest neighbor one, play an important role in determining the diffusion constant.
引用
收藏
页码:1149 / 1156
页数:8
相关论文
共 50 条
  • [31] Diffusion and Ballistic Transport in One-Dimensional Quantum Systems
    Sirker, J.
    Pereira, R. G.
    Affleck, I.
    PHYSICAL REVIEW LETTERS, 2009, 103 (21)
  • [32] TRANSITION FROM CLASSICAL TO QUANTUM HALL-EFFECT IN A SYSTEM WITH ONE-DIMENSIONAL PERIODIC POTENTIAL
    AIZIN, GR
    VOLKOV, VA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 92 (01): : 329 - 338
  • [33] Quench dynamics of one-dimensional bosons in a commensurate periodic potential: A quantum kinetic equation approach
    Tavora, Marco
    Mitra, Aditi
    PHYSICAL REVIEW B, 2013, 88 (11)
  • [34] The luminescence quantum yield of organic one-dimensional periodic nanostructures
    Pisignano, D
    Raganato, MF
    Persano, L
    Gigli, G
    Visconti, P
    Barbarella, G
    Favaretto, L
    Zambianchi, M
    Cingolani, R
    NANOTECHNOLOGY, 2004, 15 (08) : 953 - 957
  • [35] PT-symmetry in one-dimensional quantum periodic potentials
    Cerveró, JM
    PHYSICS LETTERS A, 2003, 317 (1-2) : 26 - 31
  • [36] QUANTUM OHMIC DISSIPATION - PARTICLE ON A ONE-DIMENSIONAL PERIODIC LATTICE
    ASLANGUL, C
    POTTIER, N
    SAINTJAMES, D
    PHYSICS LETTERS A, 1985, 111 (04) : 175 - 178
  • [37] DYNAMICAL SIMULATION OF TRANSPORT IN ONE-DIMENSIONAL QUANTUM WIRES
    LEUNG, K
    EGGER, R
    MAK, CH
    PHYSICAL REVIEW LETTERS, 1995, 75 (18) : 3344 - 3347
  • [38] One-dimensional repulsive Fermi gas in a tunable periodic potential
    Pilati, Sebastiano
    Barbiero, Luca
    Fazio, Rosario
    Dell'Anna, Luca
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [39] Terahertz photocurrents in heterostructures with one-dimensional lateral periodic potential
    Olbrich, P.
    Ravash, R.
    Feil, T.
    Danilov, S. D.
    Allerdings, J.
    Weiss, D.
    Ivchenko, E. L.
    Ganichev, S. D.
    2008 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES, VOLS 1 AND 2, 2008, : 543 - 543
  • [40] ONE-DIMENSIONAL SCHRODINGER-EQUATION WITH AN ALMOST PERIODIC POTENTIAL
    OSTLUND, S
    PANDIT, R
    RAND, D
    SCHELLNHUBER, HJ
    SIGGIA, ED
    PHYSICAL REVIEW LETTERS, 1983, 50 (23) : 1873 - 1876