Advancing diabetic retinopathy classification using ensemble deep learning approaches

被引:0
|
作者
Biswas, Ankur [1 ]
Banik, Rita [2 ]
机构
[1] Tripura Inst Technol, Dept Comp Sci & Engn, Narsingarh 799015, Tripura, India
[2] ICFAI Univ Tripura, Dept Elect Engn, Agartala, Tripura, India
关键词
Diabetic retinopathy; Classification; CNN; Ensemble; Recurrent neural network; MICROANEURYSMS; PROGRESSION;
D O I
10.1016/j.bspc.2025.107804
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy is a condition that significantly weakens diabetic individuals, identified by impairment of the blood vessels in the retina. Successful treatment requires early diagnosis and categorization using retinal image segmentation and classification. This study proposes a hybrid pre-trained convolutional neural network (CNN) and recurrent neural network (RNN) architecture to categorize the severity levels of diabetic retinopathy accurately. The proposed model capitalizes on the feature extraction capabilities of CNNs and the spatial dependencies captured by RNNs to achieve higher classification accuracy. The CNN is trained on a generous dataset and optimized on the retinal dataset to extract salient features specific to the task. The RNN then utilizes these features to create a final classification by discovering their spatial relationships. The proposed hybrid pre-trained CNN-RNN model outperforms existing leading-edge approaches on an openly accessible DR dataset, reaching a precision of 0.96. The promising results reveal the potential of the proposed model to accurately and efficiently categorize the severity levels of diabetic retinopathy, which could ultimately improve the diagnosis and intervention. By facilitating early detection and treatment, the model can potentially decrease the threat of severe vision loss and blindness, enhancing patient outcomes and quality of life.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A diagnosis model for detection and classification of diabetic retinopathy using deep learning
    Saba Raoof Syed
    Saleem Durai M A
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [22] An adaptive weighted ensemble learning network for diabetic retinopathy classification
    Wu, Panpan
    Qu, Yue
    Zhao, Ziping
    Cui, Yue
    Xu, Yurou
    An, Peng
    Yu, Hengyong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (02) : 285 - 301
  • [23] Ensemble deep learning and EfficientNet for accurate diagnosis of diabetic retinopathy
    Arora, Lakshay
    Singh, Sunil K.
    Kumar, Sudhakar
    Gupta, Hardik
    Alhalabi, Wadee
    Arya, Varsha
    Bansal, Shavi
    Chui, Kwok Tai
    Gupta, Brij B.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey
    Atwany, Mohammad Z.
    Sahyoun, Abdulwahab H.
    Yaqub, Mohammad
    IEEE Access, 2022, 10 : 28642 - 28655
  • [25] Deep hyperparameter transfer learning for diabetic retinopathy classification
    Patil, Mahesh S.
    Chickerur, Satyadhyan
    Kumar, Yeshwanth V. S.
    Bakale, Vijayalakshmi A.
    Giraddi, Shantala
    Roodagi, Vivekanand C.
    Kulkarni, Yashaswini N.
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2824 - 2839
  • [26] Deep Learning for Detection and Severity Classification of Diabetic Retinopathy
    Jain, Anuj
    Jalui, Arnav
    Jasani, Jahanvi
    Lahoti, Yash
    Karani, Ruhina
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [27] Detection of five severity levels of diabetic retinopathy using ensemble deep learning model
    Yatharth Kale
    Sanjeev Sharma
    Multimedia Tools and Applications, 2023, 82 : 19005 - 19020
  • [28] A Mobile Deep Learning Classification Model for Diabetic Retinopathy
    Rimaru, Daniel
    Nehme, Antonio
    Alhussein, Musaed
    Mahbub, Khaled
    Aurangzeb, Khusheed
    Khan, Anas
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2024, 30 (06) : 45 - 52
  • [29] Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey
    Atwany, Mohammad Z.
    Sahyoun, Abdulwahab H.
    Yaqub, Mohammad
    IEEE ACCESS, 2022, 10 : 28642 - 28655
  • [30] Deep Learning-Based Classification of Diabetic Retinopathy
    Huang, Zhenjia
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 371 - 375