Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model

被引:0
|
作者
Salimi, Yazdan [1 ]
Mansouri, Zahra [1 ]
Sun, Chang [1 ,2 ]
Sanaat, Amirhossein [1 ]
Yazdanpanah, Mohammadhossein [3 ]
Shooli, Hossein [4 ]
Nkoulou, Rene [1 ]
Boudabbous, Sana [5 ]
Zaidi, Habib [1 ,6 ,7 ,8 ]
机构
[1] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
[2] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[3] Shiraz Univ Med Sci, Dept Radiol, Shiraz, Iran
[4] Bushehr Univ Med Sci, Dept Radiol, Bushehr, Iran
[5] Geneva Univ Hosp, Div Radiol, CH-1211 Geneva, Switzerland
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[7] Univ Southern Denmark, Dept Nucl Med, Odense, Denmark
[8] Obuda Univ, Univ Res & Innovat Ctr, Budapest, Hungary
来源
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
Ultra-low-dose CT; Organ segmentation; Radiation dose; Deep learning; nnU-Net;
D O I
10.1007/s11547-025-01989-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeLow-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ segmentation on ultra-low-dose CT images.Materials and methods274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. External datasets with actual LD-CT images were also segmented and compared.ResultsFD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net achieved average Dice scores of 0.937 +/- 0.049 (bony tissues), 0.905 +/- 0.117 (soft-tissues), and 0.984 +/- 0.023 (body contour). LD models outperformed FD models on external datasets.ConclusionConventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models demonstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-low-dose CT images. The trained models are available on our GitHub page.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Robustness of Lung Segmentation on Ultra-Low-Dose Chest CT Using Convolutional Neural Network
    Wang, X.
    Chou, C.
    Hoffman, J.
    Emaminejad, N.
    Wahi-Anwar, M.
    McNitt-Gray, M.
    Brown, M.
    MEDICAL PHYSICS, 2018, 45 (06) : E570 - E571
  • [32] Evaluation of Ultra-low-dose (ULD) Lung Computed Tomography (CT) Using Deep-learning: A Phantom Study
    Kim, Daehong
    Son, Kihong
    Baek, Cheol-Ha
    Jeon, Pil-Hyun
    Lee, Sooyeul
    JOURNAL OF MAGNETICS, 2021, 26 (04) : 429 - 436
  • [33] Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework
    Gauthier Dot
    Thomas Schouman
    Guillaume Dubois
    Philippe Rouch
    Laurent Gajny
    European Radiology, 2022, 32 : 3639 - 3648
  • [34] Evaluation of Ultra-Low-Dose Chest CT Images to Detect Lung Lesions
    Jalli, Reza
    Zarei, Fariba
    Chatterjee, Sabyasachi
    Haghighi, Rezvan Ravanfar
    Novshadi, Alireza
    Iranpour, Pooya
    Sefidbakht, Sepideh
    Chatterjee, Vani Vardhan
    MIDDLE EAST JOURNAL OF CANCER, 2020, 13 (02) : 299 - 307
  • [35] Evaluation of Ultra-Low-Dose Chest CT Images to Detect Lung Lesions
    Jalli, Reza
    Zarei, Fariba
    Chatterjee, Sabyasachi
    Haghighi, Rezvan Ravanfar
    Novshadi, Alireza
    Iranpour, Pooya
    Sefidbakht, Sepideh
    Chatterjee, Vani Vardhan
    MIDDLE EAST JOURNAL OF CANCER, 2022, 13 (02) : 299 - 307
  • [36] Automated Deep Learning-based Segmentation of Cardiac PET Images: Addressing Challenges in PET/CT Mismatch and Low Dose CTAC Scans
    Salimi, Y.
    Mansouri, Z.
    Zaidi, H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S773 - S773
  • [37] Deep Learning Improves the Detection of Ultra-Low-Dose CT Scan Parameters in Children with Cystic Fibrosis
    Bayfield, K. J.
    Ram, S.
    Weinheimer, O.
    Fitzpatrick, R.
    Hatt, C.
    Kennedy, B.
    Blaxland, A.
    Caplain, N.
    Wielputz, M.
    Yu, L.
    Robinson, T. E.
    Bartholmai, B. J.
    Fitzgerald, D. A.
    Selvadurai, H.
    Galban, C. J.
    Robinson, P. D.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [38] Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework
    Dot, Gauthier
    Schouman, Thomas
    Dubois, Guillaume
    Rouch, Philippe
    Gajny, Laurent
    EUROPEAN RADIOLOGY, 2022, 32 (06) : 3639 - 3648
  • [39] Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT
    Jiang, Beibei
    Li, Nianyun
    Shi, Xiaomeng
    Zhang, Shuai
    Li, Jianying
    de Bock, Geertruida H.
    Vliegenthart, Rozemarijn
    Xie, Xueqian
    RADIOLOGY, 2022, 303 (01) : 202 - 212
  • [40] Multiple Adversarial Learning Based Angiography Reconstruction for Ultra-Low-Dose Contrast Medium CT
    Zhang, Weiwei
    Zhou, Zhen
    Gao, Zhifan
    Yang, Guang
    Xu, Lei
    Wu, Weiwen
    Zhang, Heye
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 409 - 420