Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model

被引:0
|
作者
Salimi, Yazdan [1 ]
Mansouri, Zahra [1 ]
Sun, Chang [1 ,2 ]
Sanaat, Amirhossein [1 ]
Yazdanpanah, Mohammadhossein [3 ]
Shooli, Hossein [4 ]
Nkoulou, Rene [1 ]
Boudabbous, Sana [5 ]
Zaidi, Habib [1 ,6 ,7 ,8 ]
机构
[1] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
[2] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[3] Shiraz Univ Med Sci, Dept Radiol, Shiraz, Iran
[4] Bushehr Univ Med Sci, Dept Radiol, Bushehr, Iran
[5] Geneva Univ Hosp, Div Radiol, CH-1211 Geneva, Switzerland
[6] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[7] Univ Southern Denmark, Dept Nucl Med, Odense, Denmark
[8] Obuda Univ, Univ Res & Innovat Ctr, Budapest, Hungary
来源
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
Ultra-low-dose CT; Organ segmentation; Radiation dose; Deep learning; nnU-Net;
D O I
10.1007/s11547-025-01989-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeLow-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ segmentation on ultra-low-dose CT images.Materials and methods274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. External datasets with actual LD-CT images were also segmented and compared.ResultsFD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net achieved average Dice scores of 0.937 +/- 0.049 (bony tissues), 0.905 +/- 0.117 (soft-tissues), and 0.984 +/- 0.023 (body contour). LD models outperformed FD models on external datasets.ConclusionConventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models demonstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-low-dose CT images. The trained models are available on our GitHub page.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Automatic Segmentation of PET/CT Lymphoma using an nnU-Net Model
    Hasani, Navid
    Liu, Liangchen
    Farhadi, Faraz
    Delie, Taylor
    Hou, Benjamin
    Morris, Michael
    Summers, Ronald
    Saboury, Babak
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [2] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Fabian Isensee
    Paul F. Jaeger
    Simon A. A. Kohl
    Jens Petersen
    Klaus H. Maier-Hein
    Nature Methods, 2021, 18 : 203 - 211
  • [3] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    NATURE METHODS, 2021, 18 (02) : 203 - +
  • [4] Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net
    Choi, Yangsean
    Bang, Jooin
    Kim, Sang-Yeon
    Seo, Minkook
    Jang, Jinhee
    EUROPEAN RADIOLOGY, 2024, 34 (8) : 5389 - 5400
  • [5] Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net
    Choi, Yangsean
    Bang, Jooin
    Kim, Sang-Yeon
    Seo, Minkook
    Jang, Jinhee
    EUROPEAN RADIOLOGY, 2024, 34 (08) : 5389 - 5400
  • [6] Deep Learning Segmentation of Lymph Node Segmentation for Adaptive Radiotherapy using nnU-Net
    Brioso, Ricardo C.
    Dei, Damiano
    Lambri, Nicola
    Loiacono, Daniele
    Mancosu, Pietro
    Scorsetti, Marta
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S3109 - S3112
  • [7] Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images
    Veiga-Canuto, Diana
    Cerda-Alberich, Leonor
    Jimenez-Pastor, Ana
    Sierra, Jose Miguel Carot
    Gomis-Maya, Armando
    Sanguesa-Nebot, Cinta
    Fernandez-Paton, Matias
    Martinez de las Heras, Blanca
    Taschner-Mandl, Sabine
    Duester, Vanessa
    Poetschger, Ulrike
    Simon, Thorsten
    Neri, Emanuele
    Alberich-Bayarri, Angel
    Canete, Adela
    Hero, Barbara
    Ladenstein, Ruth
    Marti-Bonmati, Luis
    CANCERS, 2023, 15 (05)
  • [8] Emphysema Quantification Using Ultra-Low-Dose Chest CT: Efficacy of Deep Learning-Based Image Reconstruction
    Yeom, Jeong-A
    Kim, Ki-Uk
    Hwang, Minhee
    Lee, Ji-Won
    Kim, Kun-Il
    Song, You-Seon
    Lee, In-Sook
    Jeong, Yeon-Joo
    MEDICINA-LITHUANIA, 2022, 58 (07):
  • [9] Deep learning-based enhancement of ultra-low-dose cone-beam CT image using simulated data
    Kim, Sunjung
    Lee, Hyunwoo
    Yi, Won-Jin
    Cho, Min Kook
    MEDICAL IMAGING 2024: PHYSICS OF MEDICAL IMAGING, PT 1, 2024, 12925
  • [10] Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models
    Ferrante, Matteo
    Rinaldi, Lisa
    Botta, Francesca
    Hu, Xiaobin
    Dolp, Andreas
    Minotti, Marta
    De Piano, Francesca
    Funicelli, Gianluigi
    Volpe, Stefania
    Bellerba, Federica
    De Marco, Paolo
    Raimondi, Sara
    Rizzo, Stefania
    Shi, Kuangyu
    Cremonesi, Marta
    Jereczek-Fossa, Barbara A.
    Spaggiari, Lorenzo
    De Marinis, Filippo
    Orecchia, Roberto
    Origgi, Daniela
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (24)