Data-driven nonlinear system identification and SIR particle filtering for chemical process monitoring and prediction

被引:0
|
作者
Santhakumaran, Sarmilan [1 ]
Shardt, Yuri A. W. [2 ]
机构
[1] Covestro Deutschland AG, D-51365 Leverkusen, North Rhine Wes, Germany
[2] Tech Univ Ilmenau, D-98694 Ilmenau, Thuringia, Germany
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 14期
关键词
Process monitoring; nonlinear system identification; closed-loop; state prediction; data-driven modelling;
D O I
10.1016/j.ifacol.2024.08.375
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chemical process monitoring is essential for product quality, plant efficiency, and safety. Conventional methods often prove inaccurate, particularly when dealing with nonlinear process behaviour. This paper presents a new approach that combines data-driven nonlinear system identification using smoothed L-1 regularisation and a state prediction method using a sequential importance resampling (SIR) particle filter to provide a basis for process monitoring. The results obtained from the polycondensation reaction in an operator training simulator (OTS) with real process conditions validate the effectiveness of the method in detecting anomalies, addressing challenges in nonlinear process modeling, and reliable state prediction for chemical process monitoring. Copyright (C) 2024 The Authors.
引用
收藏
页码:434 / 439
页数:6
相关论文
共 50 条
  • [41] A Generic Audio Identification System for Radio Broadcast Monitoring Based on Data-driven Segmentation
    Khemiri, Houssemeddine
    Petrovska-Delacretaz, Dijana
    Chollet, Gerard
    2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 427 - 432
  • [42] Data-driven Country Safety Monitoring Terrorist Attack Prediction
    Spiliotopoulos, Dimitris
    Vassilakis, Costas
    Margaris, Dionisis
    PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019), 2019, : 1128 - 1135
  • [43] Data-Driven Fuzzy Modeling For Nonlinear dynamic System
    Hao Wan-Jun
    Qiao Yan-Hui
    Zhu Xue-Li
    Li Ze
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1095 - +
  • [44] Data-driven learning and control of nonlinear system dynamics
    Becerra-Mora, Yeyson A.
    Acosta, Jose angel
    NONLINEAR DYNAMICS, 2024,
  • [45] Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4978 - 4985
  • [46] Data-driven structural identification of nonlinear assemblies: Uncertainty Quantification
    Safari, Sina
    Montalvao, Diogo
    Monsalve, Julian M. Londono
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 170
  • [47] Identification of a process with control valve stiction using a fuzzy system: A data-driven approach
    Daneshwar, M. A.
    Noh, Norlaili Mohd
    JOURNAL OF PROCESS CONTROL, 2014, 24 (04) : 249 - 260
  • [48] Data-driven online prediction of remaining fatigue life of a steel plate based on nonlinear ultrasonic monitoring
    Sun, Di
    Zhu, Wujun
    Xiang, Yanxun
    Xuan, Fu-Zhen
    ULTRASONICS, 2024, 142
  • [49] Data-driven identification of group dynamics for motion prediction and control
    Schwager, Mac
    Anderson, Dean
    Rust, Daniela
    FIELD AND SERVICE ROBOTICS: RESULTS OF THE 6TH INTERNATIONAL CONFERENCE, 2008, 42 : 391 - 400
  • [50] Data-driven prediction and origin identification of epidemics in population networks
    Larson, Karen
    Arampatzis, Georgios
    Bowman, Clark
    Chen, Zhizhong
    Hadjidoukas, Panagiotis
    Papadimitriou, Costas
    Koumoutsakos, Petros
    Matzavinos, Anastasios
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (01):