Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals

被引:0
|
作者
Liang, Dong [1 ]
Zeng, Guoming [1 ,2 ,3 ]
Lei, Xiaoling [1 ]
Sun, Da [4 ,5 ]
机构
[1] Chongqing Acad Sci & Technol, Chongqing 401123, Peoples R China
[2] Chongqing Univ Sci & Technol, Sch Civil & Hydraul Engn, Chongqing 401331, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Civil Engn, Chongqing 400074, Peoples R China
[4] Wenzhou Univ, Coll Life & Environm Sci, Natl & Local Joint Engn Res Ctr Ecol Treatment Tec, Wenzhou 325035, Peoples R China
[5] Wenzhou Univ, Coll Life & Environm Sci, Zhejiang Prov Key Lab Water Environm & Marine Biol, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
endocrine-disrupting chemicals; nZVI; advanced oxidation techniques; persulphate; toxicity; POLYBROMINATED DIPHENYL ETHERS; BISPHENOL-A; DEGRADATION; WATER; REMEDIATION; NZVI; DEBROMINATION; PRODUCTS; KINETICS; TETRACYCLINE;
D O I
10.3390/toxics12110814
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Endocrine-disrupting chemicals are a new class of pollutants that can affect hormonal metabolic processes in animals and humans. They can enter the aquatic environment through various pathways and gradually become enriched, thus posing a serious threat to the endocrine and physiological systems of both animals and humans. Nano zero-valent iron has promising applications in endocrine disruptor removal due to its excellent reducing properties and high specific surface area. However, given the dispersed focus and fragmented results of current studies, a comprehensive review is still lacking. In this paper, it was analyzed that the types of endocrine disruptors and their emission pathways reveal the sources of these compounds. Then, the main technologies currently used for endocrine disruptor treatment are introduced, covering physical, chemical, and biological treatment methods, with a special focus on persulfate oxidation among advanced oxidation technologies. Also, the paper summarizes the various activation methods of persulfate oxidation technology and proposes the nZVI-activated persulfate technology as the most promising means of treatment. In addition, this paper reviews the research progress of different modification methods of nZVI in activating persulfate for the removal of EDCs. Finally, the discussion includes recycling studies of nZVI/PS technology and emphasizes the urgency and importance of endocrine disruptor treatment. The review of this paper provides further scientific basis and technical support for nZVI/PS technology in the field of endocrine disruptor management.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism
    Diao, Zeng-Hui
    Xu, Xiang-Rong
    Chen, Hui
    Jiang, Dan
    Yang, Yu-Xi
    Kong, Ling-Jun
    Sun, Yu-Xin
    Hu, Yong-Xia
    Hao, Qin-Wei
    Liu, Ling
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 316 : 186 - 193
  • [22] Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: Performance, salt resistance, and reaction mechanisms
    Wu, Guocui
    Kong, Wenjia
    Gao, Yue
    Kong, Yan
    Dai, Zhenguo
    Dan, Hongbing
    Shang, Yanan
    Wang, Shouquan
    Yin, Fengjiao
    Yue, Qinyan
    Gao, Baoyu
    CHEMOSPHERE, 2022, 286
  • [23] Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature
    Deng, Jing
    Xu, Mengyuan
    Chen, Yijing
    Li, Jun
    Qiu, Chungen
    Li, Xueyan
    Zhou, Shiqing
    CHEMICAL ENGINEERING JOURNAL, 2019, 366 : 491 - 503
  • [24] Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature
    Deng, Jing
    Xu, Mengyuan
    Chen, Yijing
    Li, Jun
    Qiu, Chungen
    Li, Xueyan
    Zhou, Shiqing
    Chemical Engineering Journal, 2020, 366 : 491 - 503
  • [25] Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron
    Jing Cai
    Yan Zhang
    Environmental Science and Pollution Research, 2022, 29 : 8281 - 8293
  • [26] Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron
    Cai, Jing
    Zhang, Yan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (06) : 8281 - 8293
  • [27] Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA
    Dong, Haoran
    He, Qi
    Zeng, Guangming
    Tang, Lin
    Zhang, Lihua
    Xie, Yankai
    Zeng, Yalan
    Zhao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 410 - 418
  • [28] Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZVI)
    Xia Xuefen
    Hua Yilong
    Huang Xiaoyue
    Ling Lan
    Zhang Weixian
    ACTA CHIMICA SINICA, 2017, 75 (06) : 594 - 601
  • [29] Aqueous phosphate removal using nanoscale zero-valent iron
    Almeelbi, Talal
    Bezbaruah, Achintya
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (07)
  • [30] Insight into the removal of graphene oxide by nanoscale zero-valent iron
    Zhang, Zehua
    Liu, Xia
    Wu, Jin
    Ren, Xuemei
    Li, Jiaxing
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 314