TB-GAN: A new developed Deep Learning Framework for SPECT Myocardial Perfusion Image Denoising

被引:0
|
作者
Entezarmahdi, S. [1 ]
Karimi, A. [2 ]
Faghihi, R. [2 ]
Ghasempoor, S. [1 ]
Ghaedian, T. [1 ]
机构
[1] Shiraz Univ Med Sci, Shiraz, Iran
[2] Shiraz Univ, Shiraz, Iran
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EP-0848
引用
收藏
页码:S770 / S770
页数:1
相关论文
共 50 条
  • [21] Need for objective task-based evaluation of deep learning-based denoising methods: A study in the context of myocardial perfusion SPECT
    Yu, Zitong
    Rahman, Md Ashequr
    Laforest, Richard
    Schindler, Thomas H. H.
    Gropler, Robert J. J.
    Wahl, Richard L. L.
    Siegel, Barry A. A.
    Jha, Abhinav K. K.
    MEDICAL PHYSICS, 2023, 50 (07) : 4122 - 4137
  • [22] A new method incorporating deep learning with shape priors for left ventricular segmentation in myocardial perfusion SPECT images
    Zhu, Fubao
    Li, Longxi
    Zhao, Jinyu
    Zhao, Chen
    Tang, Shaojie
    Nan, Jiaofen
    Li, Yanting
    Zhao, Zhongqiang
    Shi, Jianzhou
    Chen, Zenghong
    Han, Chuang
    Jiang, Zhixin
    Zhou, Weihua
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 160
  • [23] Observer-study-based evaluation of a taskspecific deep-learning-based denoising method for myocardial perfusion SPECT using clinical data
    Rahman, Md Ashequr
    Yu, Zitong
    Siegel, Barry
    Jha, Abhinav
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [24] Edge-Preserving Convolutional Neural Network for Image Denoising in Low Dose SPECT Myocardial Perfusion Imaging
    Toumi, Mehdi
    Brankov, Jovan
    Yang, Yongyi
    Pretorius, P. Hendrik
    King, Michael
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [25] Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning
    Liu, Hui
    Wu, Jing
    Miller, Edward J.
    Liu, Chi
    Yaqiang
    Liu
    Liu, Yi-Hwa
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (09) : 2793 - 2800
  • [26] Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning
    Hui Liu
    Jing Wu
    Edward J. Miller
    Chi Liu
    Yi-Hwa Yaqiang
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 2793 - 2800
  • [27] A deep learning-based automated diagnosis system for SPECT myocardial perfusion imaging
    Kusumoto, Dai
    Akiyama, Takumi
    Hashimoto, Masahiro
    Iwabuchi, Yu
    Katsuki, Toshiomi
    Kimura, Mai
    Akiba, Yohei
    Sawada, Hiromune
    Inohara, Taku
    Yuasa, Shinsuke
    Fukuda, Keiichi
    Jinzaki, Masahiro
    Ieda, Masaki
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] A Deep Learning Denoising Framework Based on FFDNet for SAR Image Change Detection
    Duan, Hongke
    Dong, Xiaorui
    You, Shuailin
    Han, Shijing
    PROCEEDINGS OF 2021 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2021), 2021, : 52 - 55
  • [29] Automatic reorientation by deep learning to generate short-axis SPECT myocardial perfusion images
    Fubao Zhu
    Guojie Wang
    Chen Zhao
    Saurabh Malhotra
    Min Zhao
    Zhuo He
    Jianzhou Shi
    Zhixin Jiang
    Weihua Zhou
    Journal of Nuclear Cardiology, 2023, 30 : 1825 - 1835
  • [30] “Virtual” attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning
    Tomoe Hagio
    Alexis Poitrasson-Rivière
    Jonathan B. Moody
    Jennifer M. Renaud
    Liliana Arida-Moody
    Ravi V. Shah
    Edward P. Ficaro
    Venkatesh L. Murthy
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 3140 - 3149