GLOBAL WELL-POSEDNESS OF 3D MAGNETO-MICROPOLAR FLUID EQUATIONS WITHOUT MAGNETIC DIFFUSION

被引:0
|
作者
Wang, Yazhou [1 ]
Wang, Yuzhu [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Peoples R China
关键词
Magneto-micropolar fluid equations; without magnetic diffusion; global stability; periodic boundary conditions; 3-D MHD SYSTEM; REGULARITY CRITERION; WEAK SOLUTIONS; EXISTENCE; MAGNETOHYDRODYNAMICS; DISSIPATION;
D O I
10.3934/eect.2025011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper investigates 3D magneto-micropolar fluid equations without magnetic diffusion on periodic boxes. When the magnetic diffusion disappears, we demonstrate the global existence of the smooth solutions under the condition that the initial values is small enough. Here we assume that the average of the initial values is equal to zero, and the initial values have some symmetry. The proof is mainly based on the time-weighted energy estimate, poincare<acute accent> type inequality and bootstrapping argument.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A new blow up criterion for the 3D magneto-micropolar fluid flows without magnetic diffusion
    Dongxiang Chen
    Qifeng Liu
    Boundary Value Problems, 2021
  • [32] A new blow up criterion for the 3D magneto-micropolar fluid flows without magnetic diffusion
    Chen, Dongxiang
    Liu, Qifeng
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [33] Global well-posedness and large time behavior for the 3D anisotropic micropolar equations
    Shang, Haifeng
    Liu, Chao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 421 : 531 - 557
  • [34] Global regularity of the 3D magneto-micropolar equations with fractional dissipation
    Jia, Yan
    Xie, Qianqian
    Dong, Bo-Qing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [35] Global regularity of the 3D magneto-micropolar equations with fractional dissipation
    Yan Jia
    Qianqian Xie
    Bo-Qing Dong
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [36] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Jishan Fan
    Zhaoyun Zhang
    Yong Zhou
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [37] Local well-posedness for the incompressible full magneto-micropolar system with vacuum
    Fan, Jishan
    Zhang, Zhaoyun
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02):
  • [38] Regularity criteria for 3D generalized incompressible magneto-micropolar fluid equations
    Fan, Jishan
    Zhong, Xin
    APPLIED MATHEMATICS LETTERS, 2022, 127
  • [39] On the strong solutions of the 3D magneto-micropolar equations
    Cruz, F. W.
    Novais, M. M.
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1963 - 1970
  • [40] Local well-posedness for 2D incompressible magneto-micropolar boundary layer system
    Lin, Xueyun
    Zhang, Ting
    APPLICABLE ANALYSIS, 2021, 100 (01) : 206 - 227