Unraveling the electrochemical K-ion intercalation kinetics of sol-gel synthesized Co-substituted K0.7MnO2 electrodes for K-ion batteries

被引:0
|
作者
Puneeth, Nuthalapati Prasanna Naga [1 ]
Kaushik, Som Datta [2 ]
Selvan, Ramakrishnan Kalai [1 ]
机构
[1] Bharathiar Univ, Dept Phys, Energy Storage & Convers Devices Lab, Coimbatore 641046, Tamil Nadu, India
[2] Bhabha Atom Res Ctr, UGC DAE Consortium Sci Res Mumbai Ctr, 246 C Common Facil Bldg, Mumbai 400085, India
关键词
Layered metal oxides; Neutron powder diffraction; Electrochemical kinetics; K -ion batteries; CATHODE MATERIAL; POTASSIUM; PERFORMANCE; NEUTRON;
D O I
10.1016/j.jelechem.2024.118914
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Developing potassium-ion batteries could complement the existing lithium-ion battery technology in this digital era. The KxMnO2-based layered transition metal oxides can deliver high specific capacity due to the Mn 3 +/4 + redox couple. However, structural changes during the reversible insertion of K-ions affect the material's integrity, resulting in capacity fading. Herein, the substitution of cobalt for manganese was studied to understand the effects of altered structural characteristics on the electrochemical performance of K 0.7 Mn 1-y Co y O 2 (y = 0.0, 0.2, 0.3, and 0.5) cathodes in K-ion batteries. X-ray diffraction (XRD) and neutron powder diffraction (NPD) analysis revealed the formation of a solid solution into a P3-type structure by suppressing the secondary phases accommodating more K-ions (0.7 K+) in the interlayers. The NPD analysis further corroborated the better crystallinity with single-phase formation without impurities. Overlapping cyclic voltammetry (CV) curves and improved coulombic efficiency in galvanostatic charge-discharge (GCD) analyses revealed the inductive effect between Mn and Co ions. Among the prepared compositions, K 0.7 Mn 0.7 Co 0.3 O 2 demonstrated relatively better capacity retention of 89 % at 200 mA/g with a dominant contribution of Mn 3 +/4 + redox couple. The insertion kinetics of K-ions were further analyzed using the galvanostatic intermittent titration technique (GITT), and electrochemical impedance spectroscopy (EIS) techniques, which demonstrated better diffusion coefficients with low reaction resistance and decreased interfacial resistance. In-situ EIS revealed a significant decrease in the charge transfer resistance during potassiation. Redox-active Co 3 +/4 + could effectively mitigate severe structural transformations, ease the insertion of K+ ions, and promote K 0.7 Mn 0.7 Co 0.3 O 2 as a suitable cathode for K-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synthesis and electrochemical properties of crystalline K0.7MnO2 particles for K-ion batteries
    Puneeth, N. Prasanna Naga
    Kaushik, S. D.
    Selvan, R. Kalai
    MATERIALS LETTERS, 2022, 316
  • [2] Improved K-Ion Diffusion Kinetics of Cobalt-Substituted P3-type K0.67MnO2 Electrodes for K-Ion Batteries
    Puneeth, Nuthalapati Prasanna Naga
    Kaushik, Som Datta
    Kalai Selvan, Ramakrishnan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (07) : 2600 - 2613
  • [3] Carbon Electrodes for K-Ion Batteries
    Jian, Zelang
    Luo, Wei
    Ji, Xiulei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) : 11566 - 11569
  • [4] A kinetics study on intercalation pseudocapacitance of layered TiS2 in K-ion batteries
    Zhang, Rongyu
    Yang, Xu
    Xu, Shifeng
    Xu, Dan
    Du, Fei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (47) : 25940 - 25944
  • [5] Emerging organic electrodes for Na-ion and K-ion batteries
    Hu, Jiahui
    Hong, Yan
    Guo, Meichen
    Hu, Yang
    Tang, Wu
    Xu, Shen
    Jia, Shan
    Wei, Bangshuai
    Liu, Sihong
    Fan, Cong
    Zhang, Qichun
    ENERGY STORAGE MATERIALS, 2023, 56 : 267 - 299
  • [6] Enhanced K-ion kinetics in a layered cathode for potassium ion batteries
    Zhang, Haoyang
    Xi, Kaiying
    Jiang, Kezhu
    Zhang, Xueping
    Liu, Zhaoguo
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2019, 55 (55) : 7910 - 7913
  • [7] K3MnO4: A New Cathode Material for K-Ion Batteries
    Sagot, Armance
    Stievano, Lorenzo
    Pralong, Valerie
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (15) : 7785 - 7789
  • [8] Potential of nanocages as anode electrodes in Na- and K-ion batteries
    Razieh Razavi
    Ionics, 2021, 27 : 1159 - 1163
  • [9] Potential of nanocages as anode electrodes in Na- and K-ion batteries
    Razavi, Razieh
    IONICS, 2021, 27 (03) : 1159 - 1163
  • [10] Inside the Alloy Mechanism of Sb and Bi Electrodes for K-Ion Batteries
    Gabaudan, Vincent
    Berthelot, Romain
    Stievano, Lorenzo
    Monconduit, Laure
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (32): : 18266 - 18273