Low-Noise Millimeter-Wave Down-Conversion Technology for Chip-Scaled Optical Clocks

被引:0
|
作者
Li, Shuai [1 ,2 ]
Yan, Lulu [2 ,3 ]
Zheng, Enrang [1 ]
Du, Zhijing [2 ]
Ruan, Jun [2 ,3 ,4 ]
Zhang, Shougang [2 ,3 ,4 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian 710021, Peoples R China
[2] Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
[3] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Key Lab Time Reference & Applicat, Xian 710600, Peoples R China
基金
中国国家自然科学基金;
关键词
millimeter-wave; chip-scaled optical clock; down-conversion; regenerative frequency division; PHOTONIC DOWNCONVERSION; RADIO; FIBER; SIGNAL; OSCILLATOR; SYSTEM;
D O I
10.3390/s25041041
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article reports on a millimeter-wave (MM-wave) signal down-conversion system with low phase noise for chip-scaled optical clocks. The system utilizes analog regenerative frequency division, low-noise fractional frequency division, and phase-locked frequency division techniques to down-convert a 100 GHz MM-wave signal to 100 MHz with phase noise of -117 dBc/Hz @100 Hz, -133 dBc/Hz @1 kHz, and 10 MHz with phase noise of -124 dBc/Hz @100 Hz and -143 dBc/Hz @1 kHz. The frequency stability of the signal down-converted to 100 MHz is 5.0 x 10-15 @ 1 s and 1.8 x 10-16 @ 1000 s, while the frequency stability of the 10 MHz signal is 5.7 x 10-14 @ 1 s and 5.9 x 10-16 @1000 s, both of which decrease to the 10-16 level at 10,000 s. This down-conversion system meets the frequency conversion requirements of state-of-the-art chip-based optical clocks and micro-cavity optical combs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Millimeter-Wave CMOS Low-Noise Amplifier With High Gain and Compact Footprint
    Qian, Yun
    Shen, Yizhu
    Hu, Sanming
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (06): : 699 - 702
  • [32] A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar
    Eric A. Kittlaus
    Danny Eliyahu
    Setareh Ganji
    Skip Williams
    Andrey B. Matsko
    Ken B. Cooper
    Siamak Forouhar
    Nature Communications, 12
  • [33] 2.4 GHz high IIP3 and low-noise down-conversion mixer
    Chen, Jun-Do
    Lin, Zhi-Ming
    2006 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, 2006, : 37 - +
  • [34] Millimeter-wave low noise amplifiers suitable for flip-chip assembly
    Transmission Devices Laboratory, Japan
    不详
    SEI Tech Rev, 81 (31-35):
  • [35] Millimeter-wave low power UWB CMOS common-gate low-noise amplifier
    Yang Ge-Liang
    Wang Zhi-Gong
    Li Zhi-Qun
    Li Qin
    Liu Fa-En
    Li Zhu
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2014, 33 (06) : 584 - 590
  • [36] A reconfigurable millimeter-wave wideband low-noise amplifier in 55-nm CMOS
    Zhang, Wei
    Deng, Dongqin
    Wan, Jialong
    Wang, Hao
    Chang, Sheng
    Huang, Qijun
    He, Jin
    MICROELECTRONICS JOURNAL, 2022, 127
  • [37] Celestial Signals: Are Low-Noise Amplifiers the Future for Millimeter-Wave Radio Astronomy Receivers?
    Cuadrado-Calle, David
    George, Danielle
    Ellison, Brian
    Fuller, Gary A.
    Cleary, Kieran
    IEEE MICROWAVE MAGAZINE, 2017, 18 (06) : 90 - 99
  • [38] A Millimeter-Wave (23-32 GHz) Wideband BiCMOS Low-Noise Amplifier
    El-Nozahi, Mohamed
    Sanchez-Sinencio, Edgar
    Entesari, Kamran
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (02) : 289 - 299
  • [39] A Low-Power Linear SiGe BiCMOS Low-Noise Amplifier for Millimeter-Wave Active Imaging
    Chen, Austin Ying-Kuang
    Baeyens, Yves
    Chen, Young-Kai
    Lin, Jenshan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (02) : 103 - 105
  • [40] Low Noise Titanium Nitride KIDs for SuperSpec: A Millimeter-Wave On-Chip Spectrometer
    Hailey-Dunsheath, S.
    Shirokoff, E.
    Barry, P. S.
    Bradford, C. M.
    Chapman, S.
    Che, G.
    Glenn, J.
    Hollister, M.
    Kovacs, A.
    LeDuc, H. G.
    Mauskopf, P.
    McKenney, C.
    O'Brient, R.
    Padin, S.
    Reck, T.
    Shiu, C.
    Tucker, C. E.
    Wheeler, J.
    Williamson, R.
    Zmuidzinas, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 180 - 187