Machine learning-based accidents analysis and risk early warning of hazardous materials transportation

被引:0
|
作者
Chai, Huo [1 ]
Dong, Kaikai [2 ]
Liang, Yiming [2 ]
Han, Zhencheng [2 ]
He, Ruichun [2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Elect Informat & Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Traff & Transportat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hazardous materials transportation; Machine learning; Accident analysis; Risk early warning; SPEED-DENSITY RELATIONSHIP; FUNCTIONAL FORM;
D O I
10.1016/j.jlp.2025.105594
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, we conduct a comprehensive statistical analysis of the increasing frequency of hazardous materials accidents in the U.S. highway transportation sector. Based on these findings, we propose an enhanced model designed to provide robust data support for risk warning initiatives. After analyzing over 600,000 accidents from 1971 to 2023, we observe that the annual number of accidents has exceeded 20,000 since 2021. This trend underscores the urgent need to enhance the accuracy of accident risk warnings to mitigate economic losses. The study further reveals that most accidents occur between 6:00 and 11:00, with 91.7% of these incidents resulting in spillage. This finding underscores the critical need for a robust emergency response plan specifically tailored to address spillage events. To address the issue of performance degradation of models in large-scale datasets, the "SF-T0.25" model using a stacking algorithm was developed, which was validated using more than 70,000 spillage accident records from 2021 to 2023. The results show that the prediction accuracy of the model reaches 0.9628, which is better than the parameter-adjusted ET model (0.94981). The SF-T0.25 model also performs well in indicators such as the Jaccard similarity coefficient and the cross-entropy. The mean value of Jaccard similarity coefficient in predicting the type of accident weather conditions is more than 0.97 and the mean value of Cross-Entropy Loss in predicting the range of instantaneous speed of vehicles during accidents is less than 0.05, which proves that the model can provide reliable data support for early risk warning of hazardous materials transportation.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Minimum risk route analysis of hazardous materials transportation
    Ren Changxing
    Wu Zongzhi
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 6, PTS A AND B, 2006, 6 : 1950 - 1954
  • [22] Quantitative Risk Analysis on Rail Transportation of Hazardous Materials
    Mohammadfam, Iraj
    Zarei, Esmaeil
    Yazdi, Mohammad
    Gholamizadeh, Kamran
    Mathematical Problems in Engineering, 2022, 2022
  • [23] Quantitative Risk Analysis on Rail Transportation of Hazardous Materials
    Mohammadfam, Iraj
    Zarei, Esmaeil
    Yazdi, Mohammad
    Gholamizadeh, Kamran
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [24] HISTORICAL-ANALYSIS OF ACCIDENTS IN CHEMICAL-PLANTS AND IN THE TRANSPORTATION OF HAZARDOUS MATERIALS
    VILCHEZ, JA
    SEVILLA, S
    MONTIEL, H
    CASAL, J
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 1995, 8 (02) : 87 - 96
  • [25] Analysis on Tank Truck Accidents Involved in Road Hazardous Materials Transportation in China
    Shen, Xiaoyan
    Yan, Ying
    Li, Xiaonan
    Xie, Chenjiang
    Wang, Lihua
    TRAFFIC INJURY PREVENTION, 2014, 15 (07) : 762 - 768
  • [26] RisklnDroid: Machine Learning-Based Risk Analysis on Android
    Merlo, Alessio
    Georgiu, Gabriel Claudiu
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2017, 2017, 502 : 538 - 552
  • [27] Machine learning-based frequency security early warning considering uncertainty of renewable generation
    Li, Huarui
    Li, Changgang
    Liu, Yutian
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 134
  • [28] The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout Prediction
    Lee, Sunbok
    Chung, Jae Young
    APPLIED SCIENCES-BASEL, 2019, 9 (15):
  • [29] Machine Learning-Based Early Warning Systems for Clinical Deterioration: Systematic Scoping Review
    Muralitharan, Sankavi
    Nelson, Walter
    Di, Shuang
    McGillion, Michael
    Devereaux, P. J.
    Barr, Neil Grant
    Petch, Jeremy
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (02)
  • [30] Risk criteria for the transportation of hazardous materials
    Roodbol, HG
    QUANTIFIED SOCIETAL RISK AND POLICY MAKING, 1998, 12 : 41 - 48