Elementary Symmetric Partitions

被引:1
|
作者
Ballantine, Cristina [1 ]
Beck, George [2 ]
Merca, Mircea [3 ,4 ]
Sagan, Bruce E. [5 ]
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[3] Natl Univ Sci & Technol Politehn Bucharest, Fundamental Sci Appl Engn Res Ctr, Dept Math Methods & Models, Bucharest 060042, Romania
[4] Acad Romanian Scientists, ,, Bucharest 050044, Romania
[5] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Bijection; Binary partition; <italic>d</italic>-ary partition; Elementary symmetric polynomial; Forward difference operator; Generating function; Integer partition; Rooted partition;
D O I
10.1007/s00026-024-00731-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let ek(x1,& mldr;,x & ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_k(x_1,\ldots ,x_\ell )$$\end{document} be an elementary symmetric polynomial and let lambda=(lambda 1,& mldr;,lambda & ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(\lambda _1,\ldots ,\lambda _\ell )$$\end{document} be an integer partition. Define prek(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{pre}\,}}_k(\lambda )$$\end{document} to be the partition whose parts are the summands in the evaluation ek(lambda 1,& mldr;,lambda & ell;)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_k(\lambda _1,\ldots ,\lambda _\ell )$$\end{document}. The study of such partitions was initiated by Ballantine, Beck, and Merca who showed (among other things) that pre2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{pre}\,}}_2$$\end{document} is injective as a map on binary partitions of n. In the present work, we derive a host of identities involving the sequences which count the number of parts of a given value in the image of pre2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{pre}\,}}_2$$\end{document}. These include generating functions, explicit expressions, and formulas for forward differences. We generalize some of these to d-ary partitions and explore connections with color partitions. Our techniques include the use of generating functions and bijections on rooted partitions. We end with a list of conjectures and a direction for future research.
引用
收藏
页数:22
相关论文
共 50 条