A Machine Learning-based Inverse Scattering Method for Biomedical Imaging Segmentation

被引:0
|
作者
Du, Naike [1 ]
Ye, Xiuzhu [1 ]
机构
[1] Beijing Inst Technol, Sch Elect & Informat, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
inverse scattering method; SOM; transformer-based network; imaging segmentation;
D O I
10.1109/AP-S/INC-USNC-URSI52054.2024.10686379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a transformer-based neural network, for segmenting the images of human tissues obtained by inverse scattering method. Firstly, the distribution image of relative permittivity for the human tissue is obtained by the subspace-based optimization method (SOM). Then the obtained results are fed into a transformer-based network to output a segmentation mask. Numerical results verify that this method can get clear edges for different tissues, and it can achieve accurate classification for human tissue imaging.
引用
收藏
页码:251 / 252
页数:2
相关论文
共 50 条
  • [21] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Fabian Isensee
    Paul F. Jaeger
    Simon A. A. Kohl
    Jens Petersen
    Klaus H. Maier-Hein
    Nature Methods, 2021, 18 : 203 - 211
  • [22] Improving machine learning-based bitewing segmentation with synthetic data
    Tolstaya, Ekaterina
    Tichy, Antonin
    Paris, Sebastian
    Schwendicke, Falk
    JOURNAL OF DENTISTRY, 2025, 156
  • [23] Deep learning-based inverse method for layout design
    Zhang, Yujie
    Ye, Wenjing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (02) : 527 - 536
  • [24] Learning-Based Sampling Method for Point Cloud Segmentation
    An, Yi
    Wang, Jian
    He, Lijun
    Li, Fan
    IEEE SENSORS JOURNAL, 2024, 24 (15) : 24140 - 24151
  • [25] Machine Learning-based Diffractive Imaging with Subwavelength Resolution
    Ghosh, Abantika
    Roth, Diane J.
    Nicholls, Luke H.
    Wardley, William P.
    Zayats, Anatoly
    Podolskiy, Viktor A.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [26] Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval
    Karisani, Payam
    Qin, Zhaohui S.
    Agichtein, Eugene
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2018,
  • [27] Deep Learning-Based Image Segmentation on Multimodal Medical Imaging
    Guo, Zhe
    Li, Xiang
    Huang, Heng
    Guo, Ning
    Li, Quanzheng
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 162 - 169
  • [28] Deep Learning-Based Inverse Scattering With Structural Similarity Loss Functions
    Huang, Youyou
    Song, Rencheng
    Xu, Kuiwen
    Ye, Xiuzhu
    Li, Chang
    Chen, Xun
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 4900 - 4907
  • [29] Machine learning-based inverse predictive model for AFP based thermoplastic composites
    Wanigasekara, Chathura
    Oromiehie, Ebrahim
    Swain, Akshya
    Prusty, B. Gangadhara
    Nguang, Sing Kiong
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2021, 22
  • [30] Compressed Machine Learning-Based Inverse Model for the Design of Microwave Filters
    Sedaghat, Mostafa
    Trinchero, Riccardo
    Canavero, Flavio
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2021, : 13 - 15