A Reinforcement Learning Framework for N-Ary Document-Level Relation Extraction

被引:0
|
作者
Yuan, Chenhan [1 ]
Rossi, Ryan [2 ]
Katz, Andrew [3 ]
Eldardiry, Hoda [3 ]
机构
[1] Univ Manchester, Manchester M13 9PL, England
[2] Adobe Res, San Jose, CA 95112 USA
[3] Virginia Tech, Blacksburg, VA 24061 USA
关键词
Relation extraction; reinforcement learning; contrastive learning; document-level extraction;
D O I
10.1109/TBDATA.2024.3410099
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Bases (KBs) have become more complex because some facts in KBs include more than two entities. The construction and completion of these KBs require a new relation extraction task to retrieve complex facts from the text. To address this issue, we present a new N-ary Document-Level relation extraction task that involves extracting relations that 1) include an arbitrary number of entities, and 2) can span multiple sentences within a document. This new task requires inferring relation labels and entity completeness, i.e., whether the entities in the document are (insufficient to describe the relation. We propose a reinforcement learning-based relation classifier training framework that can adapt most existing binary document-level relation extractors to this task. Extensive experimental evaluation demonstrates that our proposed framework is effective in reducing the impact of noise introduced by distant supervision or unrelated sentences in the document.
引用
收藏
页码:512 / 523
页数:12
相关论文
共 50 条
  • [21] Document-Level Relation Extraction with a Dependency Syntax Transformer and Supervised Contrastive Learning
    Yang, Ming
    Zhang, Yijia
    Banbhrani, Santosh Kumar
    Lin, Hongfei
    Lu, Mingyu
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE GRAPH EMPOWERS THE DIGITAL ECONOMY, CCKS 2022, 2022, 1669 : 43 - 54
  • [22] Document-level relation extraction with global and path dependencies
    Jia, Wei
    Ma, Ruizhe
    Yan, Li
    Niu, Weinan
    Ma, Zongmin
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [23] Self-supervised commonsense knowledge learning for document-level relation extraction
    Li, Rongzhen
    Zhong, Jiang
    Xue, Zhongxuan
    Dai, Qizhu
    Li, Xue
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [24] Entity and Evidence Guided Document-Level Relation Extraction
    Huang, Kevin
    Qi, Peng
    Wang, Guangtao
    Ma, Tengyu
    Huang, Jing
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 307 - 315
  • [25] Exploiting Ubiquitous Mentions for Document-Level Relation Extraction
    Zhang, Ruoyu
    Li, Yanzeng
    Zhang, Minhao
    Zou, Lei
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1986 - 1990
  • [26] Few-Shot Document-Level Relation Extraction
    Popovic, Nicholas
    Faerber, Michael
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 5733 - 5746
  • [27] Document-level Relation Extraction With Entity and Context Information
    Huang, He-Yan
    Yuan, Chang-Sen
    Feng, Chong
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (10): : 1953 - 1962
  • [28] Automatic Graph Generation for Document-Level Relation Extraction
    Yu, Yanhua
    Shen, Fangting
    Yang, Shengli
    Li, Jie
    Wang, Yuling
    Ma, Ang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [29] Evidence-aware Document-level Relation Extraction
    Xu, Tianyu
    Hua, Wen
    Qu, Jianfeng
    Li, Zhixu
    Xu, Jiajie
    Liu, An
    Zhao, Lei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2311 - 2320
  • [30] HistRED: A Historical Document-Level Relation Extraction Dataset
    Yang, Soyoung
    Choi, Minseok
    Cho, Youngwoo
    Choo, Jaegul
    arXiv, 2023,