Branching of Weil Representation for G2

被引:0
|
作者
Wang, Zhiqiang [1 ]
Fan, Xingya [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, 777 Qiushi Rd, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Weil representation; Laurent polynomial; Plancherel formula; LAURENT POLYNOMIALS;
D O I
10.1007/s00006-025-01370-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a discussion on the branching problem that arises in the Weil representation of the exceptional Lie group of type G(2). The focus is on its decomposition under the threefold cover of SL(2, R) associated with the short root of G(2).
引用
收藏
页数:18
相关论文
共 50 条
  • [32] The geometric weil representation
    Gurevich, Shamgar
    Hadani, Ronny
    SELECTA MATHEMATICA-NEW SERIES, 2007, 13 (03): : 465 - 481
  • [33] The geometric Weil representation
    Shamgar Gurevich
    Ronny Hadani
    Selecta Mathematica, 2008, 13
  • [34] The character of the Weil representation
    Thomas, Teruji
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 221 - 239
  • [35] Weil representation and β-extensions
    Blondel, Corinne
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (04) : 1319 - 1366
  • [36] New geometric presentations for Aut G2(3) and G2(3)
    Hoffman, Corneliu
    Shpectorov, Sergey
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 813 - 826
  • [37] Core electronic correlation modifications to G2 and G2(QCI) theories
    Su, KH
    Wei, J
    Hu, XL
    Yue, H
    Lü, L
    Wang, YB
    Wen, ZY
    ACTA PHYSICO-CHIMICA SINICA, 2000, 16 (11) : 972 - 980
  • [38] The G20 and the G2
    Lin Hongyu the Department of International Politics at theUniversity of International Relations
    Contemporary International Relations, 2012, 22 (02) : 49 - 55
  • [39] Representation type of the blocks of category OS in types F4 and G2
    Platt, Kenyon J.
    JOURNAL OF ALGEBRA, 2009, 322 (11) : 3823 - 3838
  • [40] The invariants of the Weil representation of SL2(Z)
    Mueller, Manuel K. -H.
    Scheithauer, Nils R.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,