Exploration of the potential mechanism of Yiyi Tongfeng Formula in the treatment of acute gouty arthritis based on network pharmacology and molecular docking: A review

被引:0
|
作者
Tan, Boyang [1 ]
Tao, Tao [1 ]
Lin, Dongyang [2 ]
Yu, Qingyuan [1 ]
Sun, Fengling [3 ]
Li, Zhenhua [3 ]
机构
[1] Changchun Univ Chinese Med, Coll Integrat Med, Changchun, Jilin, Peoples R China
[2] Changchun Univ Chinese Med, Coll Tradit Chinese Med, Changchun, Jilin, Peoples R China
[3] Changchun Univ Chinese Med, Affiliated Hosp, Changchun 130021, Jilin, Peoples R China
关键词
acute gouty arthritis; molecular docking; network pharmacology; Yiyi Tongfeng Formula; INFLAMMASOME-DERIVED IL-1; OXIDATIVE STRESS; PATHOGENESIS; ACTIVATION; KAEMPFEROL; MANAGEMENT; QUERCETIN; RECEPTOR; PROTEIN; KINASE;
D O I
10.1097/MD.0000000000039609
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The global prevalence of gout is on the rise. Yiyi Tongfeng Formula (YTF), a traditional herbal compound, has gained recognition for its efficacy in managing acute gouty arthritis (AGA). Despite its widespread use, the underlying mechanisms of YTF in AGA treatment remain largely undefined. This study employed network pharmacology and molecular docking to elucidate these mechanisms. We utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, SymMap database, and various literature sources to identify active components and corresponding targets of YTF. Relevant AGA-associated targets were identified through the Genecards, Drugbank, Therapeutic Target Database, and Online Mendelian Inheritance in Man databases. A protein-protein interaction network was constructed to delineate interactions between YTF targets and AGA. Key ingredients and central targets were further analyzed using Cytoscape. Functional enrichment analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, were conducted via Metascape. Additionally, molecular docking studies were performed using PyMOL and AutoDock4. It was found that quercetin, kaempferol, and luteolin may be the main active components of YTF for AGA treatment. Gene Ontology enrichment analysis shows that the main biological processes involved are cellular responses to lipids, and inflammatory responses. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggests the involvement of the IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, and so on. The findings suggest a multi-faceted therapeutic approach of YTF in treating AGA, involving multiple components, targets, biological processes, and signaling pathways. This comprehensive mechanism offers a foundation for further experimental validation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Molecular mechanism of vitiligo treatment by bailing tablet based on network pharmacology and molecular docking
    Li, Jinming
    Yang, Meng
    Song, Yeqiang
    MEDICINE, 2022, 101 (26) : E29661
  • [42] Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology
    Shen, Li
    Lu, Jinmiao
    Wang, Guangfei
    Wang, Cheng
    Li, Zhiping
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [43] Exploration in the Mechanism of Ginsenoside Rg5 for the Treatment of Osteosarcoma by Network Pharmacology and Molecular Docking
    Liu, Ming-yang
    Jiang, Dong-xin
    Zhao, Xiang
    Zhang, Liang
    Zhang, Yu
    Liu, Zhen-dong
    Liu, Run-ze
    Li, Hai-jun
    Rong, Xiao-yu
    Gao, Yan-zheng
    ORTHOPAEDIC SURGERY, 2024, 16 (02) : 462 - 470
  • [44] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Yankai Dong
    Bo Tao
    Xing Xue
    Caixia Feng
    Yating Ren
    Hengyu Ma
    Junli Zhang
    Yufang Si
    Sisi Zhang
    Si Liu
    Hui Li
    Jiahao Zhou
    Ge Li
    Zhifei Wang
    Juanping Xie
    Zhongliang Zhu
    BMC Complementary Medicine and Therapies, 21
  • [45] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Dong, Yankai
    Tao, Bo
    Xue, Xing
    Feng, Caixia
    Ren, Yating
    Ma, Hengyu
    Zhang, Junli
    Si, Yufang
    Zhang, Sisi
    Liu, Si
    Li, Hui
    Zhou, Jiahao
    Li, Ge
    Wang, Zhifei
    Xie, Juanping
    Zhu, Zhongliang
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2021, 21 (01)
  • [46] Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking
    Xie, Chenchen
    Tang, Hao
    Liu, Gang
    Li, Changqing
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [47] Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method
    Gu, Jin-Yu
    Li, Fa-Jie
    Hou, Cheng-Zhi
    Zhang, Yue
    Bai, Zi-Xing
    Zhang, Qing
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (08): : 5084 - 5084
  • [48] Network pharmacology and molecular docking reveal potential mechanism of esculetin in the treatment of ulcerative colitis
    Cai, Ting
    Cai, Bin
    MEDICINE, 2023, 102 (45) : E35852
  • [49] Based on network pharmacology and molecular docking to predict the mechanism of TMDZ capsule in the treatment of IS
    Yang, Fengjiao
    Gu, Yun
    Yan, Ya
    Wang, Guangming
    MEDICINE, 2023, 102 (30) : E34424
  • [50] Mechanism of glycitein in the treatment of colon cancer based on network pharmacology and molecular docking
    Xiang, Tao
    Jin, Weibiao
    LIFESTYLE GENOMICS, 2023, 16 (01) : 1 - 10