Periodic solutions to relativistic Kepler problems: a variational approach

被引:0
|
作者
Boscaggin, Alberto [1 ]
Dambrosio, Walter [1 ]
Papini, Duccio [2 ]
机构
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, Via Giovanni Amendola 2, I-42122 Reggio Emilia, Italy
关键词
PARTICLE; PRINCIPLE; MOTIONS; FIELD;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study periodic non-collision solutions to relativistic Kepler problems in the plane. At first, using non-smooth critical point theory, we show that under a general time-periodic external force of gradient type there are two infinite families of T-periodic solutions, parameterized by their winding number around the singularity. The first family is a sequence of local minima, while the second one comes from the application of a new min-max variational principle a la Ghoussoub for non-smooth singular functionals. Secondly, we investigate the minimality of the circular and non-circular periodic solutions of the unforced problem. For this purpose, we combine level estimates of the action functional with an explicit computation of the Morse index of the circular solutions, relying, in turn, on the Conley-Zehnder index of the associated Hamiltonian systems.
引用
收藏
页码:1465 / 1504
页数:40
相关论文
共 50 条
  • [41] Agreeable solutions of variational problems
    Zaslavski, Alexander J.
    PORTUGALIAE MATHEMATICA, 2011, 68 (03) : 239 - 257
  • [42] On construction of solutions to variational problems
    Emel'yanov, SV
    Korovin, SK
    Bobylev, NA
    DOKLADY MATHEMATICS, 2001, 64 (02) : 216 - 220
  • [44] Periodic orbits of Hamiltonian systems: Applications to perturbed Kepler problems
    Guirao, Juan L. G.
    Llibre, Jaume
    Vera, Juan A.
    CHAOS SOLITONS & FRACTALS, 2013, 57 : 105 - 111
  • [45] Periodic solutions for any planar symmetric perturbation of the Kepler problem
    Vidal, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 80 (02): : 119 - 132
  • [46] RELATIVISTIC KEPLER PROBLEM
    FRONSDAL, C
    PHYSICAL REVIEW D, 1971, 3 (06): : 1299 - &
  • [47] RELATIVISTIC KEPLER PROBLEM
    ANDERSEN, CM
    VONBAEYE.HC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1384 - &
  • [48] RELATIVISTIC KEPLER PROBLEM
    JOHNSON, MH
    LIPPMANN, BA
    PHYSICAL REVIEW, 1950, 78 (03): : 329 - 329
  • [49] Relativistic Kepler map
    Matrasulov, DU
    Otajanov, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (16): : 3477 - 3482
  • [50] Periodic Solutions to O(2)-Symmetric Variational Problems: O(2) x S1-Equivariant Gradient Degree Approach
    Balanov, Zalman
    Krawcewicz, Wieslaw
    Ruan, Haibo
    NONLINEAR ANALYSIS AND OPTIMIZATION II: OPTIMIZATION, 2010, 514 : 45 - +