Machine learning assisted reactor and full process optimization design for alcohol oxidation

被引:0
|
作者
Zhang, Zhibo [1 ]
Zhang, Dongrui [1 ]
Zhu, Mengzhen [1 ]
Zhao, Hui [1 ]
Zhou, Xin [2 ]
Yan, Hao [1 ]
Yang, Chaohe [1 ]
机构
[1] China Univ Petr, Dept Chem Engn, Qingdao 266580, Shandong, Peoples R China
[2] Ocean Univ China, Coll Chem & Chem Engn, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
2-Ethylhexanol; Continuous process; AI-assisted; Process design; Optimization; Assessment; 2-ETHYLHEXANOIC ACID; NEURAL-NETWORKS; CATALYSTS; ESTERIFICATION; ORIGIN;
D O I
10.1016/j.ces.2024.121165
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The oxidation of 2-ethylhexanol (2-EHA) to produce 2-ethylhexanoic acid (2-EHAD) suffers from low efficiency and high energy consumption caused by industrial batch production process. To tackle this challenge, we proposed an AI-assisted design methodology for continuous reactor and process of 2-EHA oxidation to 2-EHAD to enhance problem-solving efficiency. Specifically, a precise reactor surrogate model is developed to accelerate the optimization of reactor internals and enhance the utility of experimental data, thereby overcoming the challenge of scarce continuous oxidation experimental data caused by long operating cycles and oxygen safety concerns. Based on optimal reaction parameters, an economic profit growth of 30% to 40% and carbon emissions reduction of 10% to 50% can be attained compared to traditional batch processes and butyraldehyde processes at the same production level. Our work not only propels continuous process design of alcohol oxidation production processes but also lays the groundwork for their widespread industrial application.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Machine Learning Assisted Hyperparameter Tuning for Optimization
    Linkous, Lauren
    Lundquist, Jonathan
    Suche, Michael
    Topsakal, Erdem
    2024 IEEE INC-USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2024, : 107 - 108
  • [22] Advancements in machine learning for material design and process optimization in the field of additive manufacturing
    Zhou, Hao-ran
    Yang, Hao
    Li, Huai-qian
    Ma, Ying-chun
    Yu, Sen
    Shi, Jian
    Cheng, Jing-chang
    Gao, Peng
    Yu, Bo
    Miao, Zhi-quan
    Wei, Yan-peng
    CHINA FOUNDRY, 2024, 21 (02) : 101 - 115
  • [23] Advancements in machine learning for material design and process optimization in the field of additive manufacturing
    Hao-ran Zhou
    Hao Yang
    Huai-qian Li
    Ying-chun Ma
    Sen Yu
    Jian Shi
    Jing-chang Cheng
    Peng Gao
    Bo Yu
    Zhi-quan Miao
    Yan-peng Wei
    China Foundry, 2024, 21 : 101 - 115
  • [24] Optimization and design of machine learning computational technique for prediction of physical separation process
    Li, Haiqing
    Nasirin, Chairun
    Abed, Azher M.
    Bokov, Dmitry Olegovich
    Thangavelu, Lakshmi
    Marhoon, Haydar Abdulameer
    Rahman, Md Lutfor
    ARABIAN JOURNAL OF CHEMISTRY, 2022, 15 (04)
  • [25] Advancements in machine learning for material design and process optimization in the field of additive manufacturing
    Hao-ran Zhou
    Hao Yang
    Huai-qian Li
    Ying-chun Ma
    Sen Yu
    Jian shi
    Jing-chang Cheng
    Peng Gao
    Bo Yu
    Zhi-quan Miao
    Yan-peng Wei
    China Foundry, 2024, 21 (02) : 101 - 115
  • [26] Process optimization of quenching and partitioning by machine learning aided with orthogonal experimental design
    Dai, Na
    Li, Jian
    Qin, Hai
    He, Guolin
    Li, Pengfei
    Wu, Zhenghua
    Wang, Shanlin
    MATERIALS RESEARCH EXPRESS, 2024, 11 (01)
  • [27] Auto Machine Learning Assisted Preparation of Carboxylic Acid by TEMPO-Catalyzed Primary Alcohol Oxidation
    Qiu, Jia
    Xu, Yougen
    Su, Shimin
    Gao, Yadong
    Yu, Peiyuan
    Ruan, Zhixiong
    Liao, Kuangbiao
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (02): : 143 - 150
  • [28] MACHINE LEARNING ASSISTED OPTIMIZATION AND ITS APPLICATION TO HYBRID DIELECTRIC RESONATOR ANTENNA DESIGN
    Ranjan, Pinku
    Gupta, Harshit
    Yadav, Swati
    Sharma, Anand
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2023, 36 (01) : 31 - 42
  • [29] Design of Terahertz InP pHEMT Using Machine Learning Assisted Global Optimization Techniques
    Wang, Jing
    Xue, Li-Yuan
    Liu, Bo
    Li, Chong
    2021 16TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC 2021), 2021, : 67 - 70
  • [30] Design and Optimization of Solid Amine CO2 Adsorbents Assisted by Machine Learning
    Zhang, Shichao
    Dong, Hang
    Lin, An
    Zhang, Chaofeng
    Du, Hong
    Mu, Junju
    Han, Jianyu
    Zhang, Jian
    Wang, Feng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (39) : 13185 - 13193