New probe of gravitational parity violation through nonobservation of the stochastic gravitational-wave background

被引:0
|
作者
Callister, Thomas [1 ]
Jenks, Leah [1 ]
Holz, Daniel E. [1 ,2 ,3 ,4 ]
Yunes, Nicolas [5 ]
机构
[1] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Enr Fermi Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[5] Univ Illinois, Illinois Ctr Adv Studies Universe, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
COSMIC STAR-FORMATION; CONSERVATION; METALLICITY; MASS;
D O I
10.1103/PhysRevD.111.044041
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Parity violation in the gravitational sector is a prediction of many theories beyond general relativity. In the propagation of gravitational waves, parity violation manifests by inducing amplitude and/or velocity birefringence between right- and left-circularly polarized modes. We study how the stochastic gravitational-wave background can be used to place constraints on these birefringent effects. We consider two model scenarios, one in which we allow birefringent corrections to become arbitrarily large and a second in which we impose stringent theory priors. In the former, we place constraints on a generic birefringent gravitational-wave signal due to the current nondetection of a stochastic background from compact binary events. We find a joint constraint on birefringent parameters kappa D and kappa z of O(10-1). In the latter scenario, we forecast constraints on parity-violating theories resulting from observations of the future upgraded LIGOVirgo-KAGRA network as well as proposed third-generation detectors. We find that third-generation detectors will be able to improve the constraints by at least 2 orders of magnitude, yielding new stringent bounds on parity-violating theories. This work introduces a novel and powerful probe of gravitational parity violation with gravitational-wave data.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Cherenkov radiation in a gravitational-wave background
    Balakin, AB
    Kerner, R
    Lemos, JPS
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (11) : 2217 - 2232
  • [32] The dipole of the astrophysical gravitational-wave background
    Dall'Armi, Lorenzo Valbusa
    Ricciardone, Angelo
    Bertacca, Daniele
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (11):
  • [33] THE PREGALACTIC COSMIC GRAVITATIONAL-WAVE BACKGROUND
    MATZNER, RA
    RELATIVISTIC GRAVITATIONAL EXPERIMENTS IN SPACE, 1989, 3046 : 25 - 37
  • [34] Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance
    Saito, Ryo
    Yokoyama, Jun'ichi
    PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [35] Parametrized parity violation in gravitational wave propagation
    Jenks, Leah
    Choi, Lyla
    Lagos, Macarena
    Yunes, Nicolas
    PHYSICAL REVIEW D, 2023, 108 (04)
  • [36] Linear polarization of the stochastic gravitational-wave background with pulsar timing arrays
    Kumar, Neha Anil
    Caliskan, Mesut
    Sato-Polito, Gabriela
    Kamionkowski, Marc
    Ji, Lingyuan
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [37] Detecting a stochastic gravitational-wave background in the presence of correlated magnetic noise
    Meyers, Patrick M.
    Martinovic, Katarina
    Christensen, Nelson
    Sakellariadou, Mairi
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [38] Gravitational wave radiometry: Mapping a stochastic gravitational wave background
    Mitra, Sanjit
    Dhurandhar, Sanjeev
    Souradeep, Tarun
    Lazzarini, Albert
    Mandic, Vuk
    Bose, Sukanta
    Ballmer, Stefan
    PHYSICAL REVIEW D, 2008, 77 (04):
  • [39] Stochastic gravitational wave background due to gravitational wave memory
    Zhao, Zhi-Chao
    Cao, Zhoujian
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (11)
  • [40] Stochastic gravitational wave background due to gravitational wave memory
    Zhi-Chao Zhao
    Zhoujian Cao
    Science China(Physics,Mechanics & Astronomy) , 2022, Mechanics & Astronomy) . 2022查看该刊数据库收录来源 (11) : 136 - 143