Density matrix emulation of quantum recurrent neural networks for multivariate time series prediction

被引:0
|
作者
Viqueira, J. D. [1 ,2 ]
Failde, D. [1 ]
Juane, M. M. [1 ]
Gomez, A. [1 ]
Mera, D. [2 ]
机构
[1] Galicia Supercomp Ctr CESGA, Santiago De Compostela 15705, Spain
[2] Univ Santiago de Compostela, Dept Elect & Comp, Comp Graph & Data Engn COGRADE, Santiago De Compostela 15782, Spain
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2025年 / 6卷 / 01期
关键词
quantum computing; machine learning; time series prediction;
D O I
10.1088/2632-2153/ad9431
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum recurrent neural networks (QRNNs) are robust candidates for modelling and predicting future values in multivariate time series. However, the effective implementation of some QRNN models is limited by the need for mid-circuit measurements. Those increase the requirements for quantum hardware, which in the current noisy intermediate-scale quantum era does not allow reliable computations. Emulation arises as the main near-term alternative to explore the potential of QRNNs, but existing quantum emulators are not dedicated to circuits with multiple intermediate measurements. In this context, we design a specific emulation method that relies on density matrix formalism. Using a compact tensor notation, we provide the mathematical formulation of the operator-sum representation involved. This allows us to show how the present and past information from a time series is transmitted through the circuit, and how to reduce the computational cost in every time step of the emulated network. In addition, we derive the analytical gradient and the Hessian of the network outputs with respect to its trainable parameters, which are needed when the outputs have stochastic noise due to hardware errors and a finite number of circuit shots (sampling). We finally test the presented methods using a hardware-efficient ansatz and four diverse datasets that include univariate and multivariate time series, with and without sampling noise. In addition, we compare the model with other existing quantum and classical approaches. Our results show how QRNNs can be trained with numerical and analytical gradients to make accurate predictions of future values by capturing non-trivial patterns of input series with different complexities.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] DYNAMICAL RECURRENT NEURAL NETWORKS - TOWARDS ENVIRONMENTAL TIME-SERIES PREDICTION
    AUSSEM, A
    MURTAGH, F
    SARAZIN, M
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1995, 6 (02) : 145 - 170
  • [32] Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction
    Chandra, Rohitash
    Zhang, Mengjie
    NEUROCOMPUTING, 2012, 86 : 116 - 123
  • [33] Time series prediction and neural networks
    Frank, RJ
    Davey, N
    Hunt, SP
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2001, 31 (1-3) : 91 - 103
  • [34] Time Series Prediction and Neural Networks
    R. J. Frank
    N. Davey
    S. P. Hunt
    Journal of Intelligent and Robotic Systems, 2001, 31 : 91 - 103
  • [35] Time Series Generation by Recurrent Neural Networks
    A. Priel
    I. Kanter
    Annals of Mathematics and Artificial Intelligence, 2003, 39 : 315 - 332
  • [36] Time series generation by recurrent neural networks
    Priel, A
    Kanter, I
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2003, 39 (03) : 315 - 332
  • [37] Recurrent neural networks for time series classification
    Hüsken, M
    Stagge, P
    NEUROCOMPUTING, 2003, 50 : 223 - 235
  • [38] A Multivariate Time Series Prediction Schema based on Multi-attention in recurrent neural network
    Yin, Xiang
    Han, Yanni
    Sun, Hongyu
    Xu, Zhen
    Yu, Haibo
    Duan, Xiaoyu
    2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, : 717 - 723
  • [39] Time Series Prediction of Agricultural Products Price based on Time Alignment of Recurrent Neural Networks
    Kurumatani, Koichi
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 81 - 88
  • [40] Application of neural networks on modeling of multivariate time series
    School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116023, China
    不详
    Yi Qi Yi Biao Xue Bao, 2006, 3 (275-279):