Boosting photocatalytic rate via internal electric field on g-C3N4/CNT/ZnIn2S4-X S-scheme heterojunction nanocomposites

被引:0
|
作者
Gu, Deng [1 ]
He, Jianing [1 ]
Bai, Yang [1 ,2 ]
Chen, Zhongxiang [1 ]
Li, Xinrong [1 ]
Badr, Shahad ali [1 ]
Li, Daoxiong [1 ]
Li, Chensheng [3 ]
机构
[1] Southwest Petr Univ, Sch Oil & Nat Gas Engn, State Key Lab Oil & Gas Reservoir Geol & Exploitat, Chengdu 610500, Peoples R China
[2] Natl Engn Res Ctr Oil & Gas Drilling & Complet Tec, Beijing 102200, Peoples R China
[3] Liaoning Univ, Coll Chem, Shenyang 110036, Peoples R China
基金
中国国家自然科学基金;
关键词
Cocatalysts; S vacancy; S-scheme; Internal electric fields; COMPOSITE;
D O I
10.1016/j.colsurfa.2025.136533
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synergistic regulation of internal electric fields by cocatalysts and sulfur vacancies facilitates the construction of an emerging step-scheme (S-scheme) heterostructures, thereby achieving effective charge separation and utilization while extending operational lifespan. In this study, g-C3N4/CNT/ZnIn2S4 (denoted as CN/CNT/ ZIS) S-scheme heterojunction composites were synthesized via hydrothermal methods and thermal treatment. The loading amounts of the cocatalysts CNT and ZIS were meticulously designed and optimized to enhance the photocatalytic rate of CN nanosheets. The photocatalytic performance of the CN/CNT/ZIS S-scheme heterojunction composite for the photodegradation of methyl orange (MO) and the photocatalytic reduction of Cr (VI) was evaluated under visible light irradiation. The results indicated that the photocatalytic degradation rate of MO for the CN/CNT/ZIS-2 composite was 24.57 times, 15.64 times, and 4.53 times greater than that of pure CN, CN/CNT, and ZIS, respectively; simultaneously, the rates for the photocatalytic reduction of Cr (VI) were 5.75 times, 3.83 times, and 2.56 times higher, respectively. Furthermore, the interfacial electric field was tested and analyzed using photo-electro-chemistry and KPFM. The significant enhancement in the photocatalytic rate of CN is attributed to the ability of the co-catalyst CNT to improve visible light absorption and the synergistic modulation of the interfacial electric field by sulfur vacancies, thereby confirming that the photocatalytic reaction system meets the criteria for an emerging S-scheme hierarchical heterostructure. This research provides valuable insights into the enhancement of photocatalytic performance through the regulation and design of S-scheme heterojunction photocatalysts via internal electric fields.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] S-scheme heterojunction AgCl/g-C3N4 with a unique electron transfer channel via a built-in electric field for enhanced H2 production
    Shang, Yanyan
    Fan, Huiqing
    Sun, Yangyang
    Wang, Weijia
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (16) : 3729 - 3739
  • [42] S-scheme g-C3N4/ZnO heterojunction photocatalyst with enhanced photodegradation of azo dye
    Lee, Ju-Ting
    Lee, Shu-Wen
    Wey, Ming-Yen
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 134
  • [43] A band structure modulated 2D/2D ZnIn2S4@amorphous polymeric g-C3N4 S-scheme heterojunction for efficient photocatalytic reduction of CO2
    Zhao, Hang
    Wang, Dechao
    Xue, Xiaoling
    Zhu, Xun
    Ye, Dingding
    Yang, Yang
    Wang, Hong
    Chen, Rong
    Liao, Qiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (26) : 15693 - 15704
  • [44] Boosting Photocatalytic Performance of ZnO Nanowires via Building Heterojunction with g-C3N4
    Wang, Yayang
    Liu, Ziyi
    Li, Yuesheng
    Yang, Xiaojie
    Zhao, Lingfei
    Peng, Jian
    MOLECULES, 2023, 28 (14):
  • [45] g-C3N4-based S-scheme heterojunction photocatalysts
    Wu, Xinhe
    Tan, Lihong
    Chen, Guoqiang
    Kang, Jiayue
    Wang, Guohong
    SCIENCE CHINA-MATERIALS, 2024, 67 (02) : 444 - 472
  • [46] ZnAl2O4/sulfur-doped g-C3N4 S-scheme heterojunction for efficient photocatalytic degradation of malachite green
    Jin, Qiyu
    Wang, Shi
    Lei, Chunsheng
    Liu, Shihao
    Feng, Siyang
    Ma, Tianji
    Lang, Zhaocheng
    OPTICAL MATERIALS, 2023, 136
  • [47] Photocatalytic CO2 Reduction Enabled by Interfacial S-Scheme Heterojunction between Ultrasmall Copper Phosphosulfide and g-C3N4
    Zhang, Xiandi
    Kim, Daekyu
    Yan, Jia
    Lee, Lawrence Yoon Suk
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) : 9762 - 9770
  • [48] Modulation of catalyst microenvironments in ZnIn2S4/g-C3N4 S-scheme heterojunction for ratio-tunable syngas production from CO2 photoreduction
    Liu, Yazi
    Deng, Aixin
    Yin, Yingjiaqi
    Lin, Jingkai
    Li, Qi
    Sun, Yue
    Zhang, Jinqiang
    Li, Shiyin
    Yang, Shaogui
    Xu, Yan
    He, Huan
    Liu, Shaomin
    Wang, Shaobin
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 362
  • [49] Enhancing photocatalytic water remediation by g-C3N4 through controlled CuO content in an S-scheme g-C3N4/CuO nanocomposite
    Riazati, Pejman
    Sheibani, Saeed
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1016
  • [50] Dual S-scheme heterojunction g-C3N4/Bi2S3/CuS composite with enhanced photocatalytic activity for methyl orange degradation
    Onwudiwe, Damian C.
    Olatunde, Olalekan C.
    Nkwe, Violet M.
    Ben Smida, Youssef
    Ferjani, Hela
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 155