Universal power-law scaling in the packing structure of frictional granular materials

被引:0
|
作者
Tang, Jiajun [1 ]
Wen, Xiaohui [1 ]
Zhang, Zhen [1 ]
Wang, Yujie [1 ,2 ,3 ]
机构
[1] Chengdu Univ Technol, Dept Phys, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
关键词
D O I
10.1103/PhysRevE.111.015420
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Friction-induced energy dissipation is one of the key factors contributing to the unique properties of granular materials, such as the preparation history dependence of the packing structure. However, it remains unclear whether or not more realistic systems that involve two or more types of friction possess unique properties distinct from those that are frictionless or with a single type of friction. Here, we use numerical simulations to investigate the packing structure of binary mixtures of particles with particle type-dependent friction coefficient. Taking single-component systems as reference, we use an effective friction coefficient mu e to represent the overall frictional strength in granular systems prepared via different protocols. Our results demonstrate that mu e exhibits a power-law dependence on the individual friction coefficients. Furthermore, we propose models that accurately predict the packing structure of frictional particle systems across a range of compositions, size ratios, and preparation protocols.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A universal power-law model for wind speed uncertainty
    Wan, Jie
    Liu, Jinfu
    Ren, Guorui
    Guo, Yufeng
    Hao, Wenbo
    Yu, Jilai
    Yu, Daren
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S10347 - S10359
  • [42] A scaling law for heat conductivity in sheared granular materials
    Rognon, P.
    Einav, I.
    Bonivin, J.
    Miller, T.
    EPL, 2010, 89 (05)
  • [43] UNIVERSAL AMPLITUDES OF POWER-LAW TAILS IN THE ASYMPTOTIC STRUCTURE FACTOR OF SYSTEMS WITH TOPOLOGICAL DEFECTS
    BRAY, AJ
    HUMAYUN, K
    PHYSICAL REVIEW E, 1993, 47 (01): : R9 - R12
  • [44] Power-law scaling in human EEG: Relation to Fourier power spectrum
    Ferree, Thomas C.
    Hwa, Rudolph C.
    Neurocomputing, 2003, 52-54 : 755 - 761
  • [45] Power-law scaling in human EEG: relation to Fourier power spectrum
    Ferree, TC
    Hwa, RC
    NEUROCOMPUTING, 2003, 52-4 : 755 - 761
  • [46] Fractional viscoelastic models for power-law materials
    Bonfanti, A.
    Kaplan, J. L.
    Charras, G.
    Kabla, A.
    SOFT MATTER, 2020, 16 (26) : 6002 - 6020
  • [47] DENSIFICATION OF POROUS MATERIALS BY POWER-LAW CREEP
    LIU, YM
    WADLEY, HNG
    DUVA, JM
    ACTA METALLURGICA ET MATERIALIA, 1994, 42 (07): : 2247 - 2260
  • [48] Helmholtz solitons in power-law optical materials
    Christian, J. M.
    McDonald, G. S.
    Potton, R. J.
    Chamorro-Posada, P.
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [49] POWER-LAW DISTRIBUTION OF LANDSLIDES IN AN EXPERIMENT ON THE EROSION OF A GRANULAR PILE
    SOMFAI, E
    CZIROK, A
    VICSEK, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (20): : L757 - L763
  • [50] Universal avalanches and pressure-dependent scaling law in granular shearing
    Chen, Meng
    Xiao, Yang
    Jiang, Xiang
    Wu, Bingyang
    Liu, Hanlong
    Chu, Jian
    ACTA GEOTECHNICA, 2025, 20 (03) : 1141 - 1155