Solvation free energies from neural thermodynamic integration

被引:0
|
作者
Mate, Balint [1 ,2 ]
Fleuret, Francois [1 ,3 ]
Bereau, Tristan [4 ,5 ]
机构
[1] Univ Geneva, Dept Comp Sci, Carouge, Switzerland
[2] Univ Geneva, Dept Phys, Geneva, Switzerland
[3] Meta AI, Fundamental Res, Paris, France
[4] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[5] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 12期
基金
瑞士国家科学基金会;
关键词
HYDRATION; DYNAMICS; SIMULATION; MECHANICS;
D O I
10.1063/5.0251736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a method for computing free-energy differences using thermodynamic integration with a neural network potential that interpolates between two target Hamiltonians. The interpolation is defined at the sample distribution level, and the neural network potential is optimized to match the corresponding equilibrium potential at every intermediate time step. Once the interpolating potentials and samples are well-aligned, the free-energy difference can be estimated using (neural) thermodynamic integration. To target molecular systems, we simultaneously couple Lennard-Jones and electrostatic interactions and model the rigid-body rotation of molecules. We report accurate results for several benchmark systems: a Lennard-Jones particle in a Lennard-Jones fluid, as well as the insertion of both water and methane solutes in a water solvent at atomistic resolution using a simple three-body neural-network potential. (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).https://doi.org/10.1063/5.0251736
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A thermodynamic model for wetting free energies from contact angles
    Extrand, CW
    LANGMUIR, 2003, 19 (03) : 646 - 649
  • [32] Blind prediction of solvation free energies from the SAMPL4 challenge
    David L. Mobley
    Karisa L. Wymer
    Nathan M. Lim
    J. Peter Guthrie
    Journal of Computer-Aided Molecular Design, 2014, 28 : 135 - 150
  • [33] Blind prediction of solvation free energies from the SAMPL4 challenge
    Mobley, David L.
    Wymer, Karisa L.
    Lim, Nathan M.
    Guthrie, J. Peter
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2014, 28 (03) : 135 - 150
  • [34] Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water
    Duffy, EM
    Jorgensen, WL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (12) : 2878 - 2888
  • [35] Prediction of solvation free energies from computed properties of solute molecular surfaces
    Politzer, P
    Murray, JS
    Abu-Awwad, F
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2000, 76 (05) : 643 - 647
  • [36] Solvation free energies and transfer free energies for amino acids from hydrophobic solution to water solution from a very simple residue model
    Gu, W
    Rahi, SJ
    Helms, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18): : 5806 - 5814
  • [37] Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies
    Andreas Mecklenfeld
    Gabriele Raabe
    Journal of Computer-Aided Molecular Design, 2020, 34 : 71 - 82
  • [38] Applicability of a thermodynamic cycle approach for a force field parametrization targeting non-aqueous solvation free energies
    Mecklenfeld, Andreas
    Raabe, Gabriele
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (01) : 71 - 82
  • [39] Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models
    Steinmann, Stephan N.
    Sautet, Philippe
    Michel, Carine
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (46) : 31850 - 31861
  • [40] Are solvation free energies of homogeneous helical peptides additive?
    Staritzbichler, R
    Gu, W
    Helms, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (40): : 19000 - 19007